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What is Continuity? 

• Heart specific finite element modeling 
• Developed by UCSD biomedical research team in 

effort solve common cardiac problems 
• Models heart subsystems in three interconnected 

loops 
–  Cellular (inner loop) 
–  Electrophysiology (middle loop) 
–  Biomechanics (outer loop)  
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About Continuity models 

• Cellular models 
–  Foundations for Biomechanics (BM) and Electrophysiology 

(EP) models 
–   Parameters embedded in BM and EP model editors 

• Biomechanical Models 
–  Solves and renders heart stress and strain data 

• Electrophysiological Models 
–  Renders paths of electrical current 
–  Dependent on conductivity properties 
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Objectives  

• Understand Continuity’s code 
• Examine the inner loop (cellular) mechanisms 
• Make modifications to all loops  
• Observe, analyze, and report outcomes 
• Simulate various heart anomalies (ischemia, arythmia) 
• Port Continuity code to ORNL institutional clusters  
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Electrophysiology model 
modifications 

•  Fitz-Hugh Nagumo model  
–  Stimulus time  
–  Transmembrane potential 
–  Conductivity tensors 
–  Membrane capacitance 

•  Beeler Reuter Ventricular Myocyte model 
–  Stimulus time 
–  Transmembrane potential 
–  Conductivity tensors 
–  Membrane capacitance 
–  Sodium potential 
–  Calcium concentration 
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Biomechanical Model Modifications

• Closed loop left and right ventricular model 
(Circulatory) 
–  Ventricular pressure 
–  Mitral and tricuspid valve resistance 
–  Arterial impedance 

• Guccione (Cellular) 
–  Intracellular calcium concentration  
–  Sarcomere properties 
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Computing Comparisons 

Macintosh workstation 
  (Serial: 1 Processor) 

  Macintosh workstation 
 (Parallel: 2 Processors) 

ORNL Institutional Clusters 

•  Memory: 4GB RAM  
•  Processor speed: 2.0GHz  
•  EP calculations time: 
  4.79 minutes 
•  Biomechanics calculations  
  time: 1.3 minutes 
•  RAM usage (basic): 
  1.15GB 
•  RAM usage (advanced): 
  2.6GB 
•  CPU usage (basic): 50% 
•  CPU usage (advanced):  
  60% 

•  Memory: 4GB RAM  
•  Processor speed: 2.0GHz  
•  EP calculations time: 
  3.02 minutes 
•  Biomechanics calculations  
   time: 2.78 seconds 
•  RAM usage (basic): 
  100MB 
•  RAM usage (advanced):  
  Est. 500MB 
•  CPU usage (basic): 86% 
•  CPU usage (advanced): 
100% 

•  Memory: 16GB RAM  
•  Processor speed: 3.0GHz  
•  EP calculations time: 
   Serial: 30 s parallel:  
   est t < 10 s 
•  Biomechanics calculations  
  time: Est. 1.39 seconds 
•  RAM usage (basic): 
  Est. 500MB  
•  RAM usage (advanced):  
  Est. 1GB  
•  CPU usage (basic): Est. 60%  
•  CPU usage (advanced): 
  Est. 80%    
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Continuity rendering analysis/results 
 Meshing orientation examples (EP) 

EP and mesh rendered data on 
Continuity 6   
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Biomechanics Results 

•     Arterial impedance = low initial ventricular pressure, ischemic conditions 

•  More deformation in the right ventricle (blood transfer to lungs) 
•  More deformation in left ventricle (blood transfer to body)   

Normal Heart Heart with ischemic initial conditions 

Data rendered on USCD Continuity 6 

Low stress High stress 
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  Biomechanics Results 
•  Sarcomere length (increased length 1.5 to 10.5µm) 

•  Significant change in left ventricular strain 

•  Minimal change in right ventricular strain 

Normal heart Heart with 10X sarcomere length 

Data rendered on USCD Continuity 6 
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Biomechanics Results 

•  Intracellular calcium concentration: 
–  High calcium concentration: minimal stress/strain effects 
–  Low calcium concentration: minimal stress/strain effects 

• Mitral and tricuspid valve resistance  
–  High resistance to flow: no stress/strain effects  

•  Time dependency problem 
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Biomechanics Results Stress/Strain 
Relations 

Strain photo Stress photo 

•  Stress has moderate relationship with strain 
•  Indicator of fiber elasticity and strength 

Data rendered on USCD Continuity 6 
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Electrophysiology Results 
stimulus time affects rendering of stimulus paths 

Data rendered on USCD Continuity 6 

Time Step from 1ms to 3ms Time Step 0ms to 220ms 

Low Current High Current 
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Electrophysiology Results 

   Large changes in conductivity tensors affect flow of 
stimulus current 

Data rendered on USCD Continuity 6 
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Electrophysiology Results 

•  Transmembrane potential: + or – significantly changes 
path of stimulus current 

• Membrane capacitance 
–     capacitance =  stimulus path narrows, current intensity 

varies 

• Beeler Reuter model 
–  Instability in specific heart meshes 
–  50% solution rendered before memory error 
–  Problem Solution = Finer mesh 
–  Requires = OIC 
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Conclusions 

1.  Circulation model analysis through Continuity biomechanics models is a new 
approach in analysis of common cardiac problems and their effects.  

2. Nodal and elemental orientation, boundary conditions, and constraints of the finite 
element heart model are very important. 

3. Cellular analysis through Continuity is useful in the analysis of some of the worlds       
most common cardiac problems 

4.  OIC advanced computing abilities will enhance abilities in long term and detailed 
heart model calculations 
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Future Research Objectives 

1.   Compile and simulate Luo-Rudy cellular Models as 
well as any other CellML models 

2.   Build and simulate all models on the OIC 
3.   Use OIC or larger HPC to simulate the cause of 

asymmetric redirection of  blood flow in humans 
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