
 

  

Computater Science and Mathematic Division 
 
 
 
 
 
 

High Performance Computing Resilience Testbed 
 
 
 

Hector J. Machin 
Research Alliance in Math and Science 

University of Turabo, Puerto Rico 
 
 

August 2009 
 
 
 

Thomas Naughton, Geoffroy Vallée, Stephen L. Scott and Anand Tikotekar 

Computater Science and Mathematic Division 
Oak Ridge National Laboratory 

 
 
 
 
 
 
 
 
 
 

Prepared for 
(Office of Science, U.S. Department of Energy) 

Prepared by 
OAK RIDGE NATIONAL LABORATORY 

Oak Ridge, Tennessee 37831-6285 
managed by 

UT-BATTELLE, LLC 
for the 

U.S. DEPARTMENT OF ENERGY 
under contract DE-AC05-00OR22725 

 
 



 

2  

Table of Contents 
 
 
 
I. Introduction……………………………………………………………………3 
 
 
 
 
II. Bacground………………………………………………………………………4 
 
 
 
 
III. Overview……………………………………………………………………….4 
 
 
 
 
IV. Resources…………………………………………………………………….5-9 
 
 
 
 
V. Methodology……………………………………………………………...…9-11 
 
 
 
 
VI. Experiments………………………………………………………………..11-14 
 
 
 
 
VII. Results……………………………………………………………………..14-15 
 
 
 
 
VIII. Conclusions……………………………………………………………………16 
 
 
 
 
IX. Future work……………………………………………………………….…..16 



 3 

3  

Abstract 
 
Scientific computing applications are becoming increasingly complex. Clusters and 
parallel systems then become an important factor for the execution of these applica-
tions. The probability of failures increases as the complexity and scale of these systems 
increases.  In this research, the effects of generating representative faults (resilience 
testbed) where explored, these can be useful when developing methods for fault correc-
tion and failure prevention.  Fault injection techniques where used while executing ap-
plication benchmarks to provide a controlled environment to study simulated failures 
on an actual running application. Through the development of a resilience testbed for 
high performance computing (HPC) the following was investigated: fault injection 
mechanisms, streamlining of data gathering/monitoring, data analyzers for failure 
evaluation, and the validation of failure detection techniques.  The system used for this 
research was the Oak Ridge National Laboratory, XTORC cluster.  The HPCC parallel 
benchmark was used during the experiments. Perl scripts were developed to automate 
the processes of: (i) data gathering/monitoring startup, (ii) benchmark execution, (iii) 
fault injection, (iv) data gathering/monitoring shutdown, (iv) data archival, and (v) 
event logging for the experiment.   The multivariate data has been projected and ana-
lyzed to properly study the system using GGobi, an open source visualization program 
for exploring high-dimensional data, and R, a software environment for statistical com-
puting and graphics. Then from the analyzed data, a hypothesis was developed for fail-
ure detection. Straight comparison between the hypothesis and the experiment event log 
provides a basis for validation of the given analyzers.  This research can provide a bet-
ter understanding of which monitoring metrics (datasets) for a supercomputer have a 
direct relationship with node failure.  This knowledge can aid in the development of 
systems for real time error tracking and failuree management, which are important in 
order to improve HPC system efficiency and application resilience. 
 

Index Terms—Fault Tolerance, HPC (High Performance Computing), MPI 
(Message Passing Interface), HPCC Parallel Benchmarks (High Performance 
Computing Challenge Parallel Benchmarks) . 

 
1 INTRODUCTION
Fault tolerance in high performance computing (HPC) systems has been researched for 
many years.  As supercomputing power reaches petascale computing power, preventing 
failure of the application is a more evident problem.  The most widely used fault toler-
ance method now days are checkpoints.  Checkpoints are stopping the running applica-
tion and writing images of its state into memory.  If the application fails, it would re-
start with the last checkpoint made.  This fault tolerance method is projected to become 
useless soon. As the cores per chip keeps doubling each thirty months; the 
supercomputer system utilization will drop to zero by year 2013.  This would be caused 
because the system will spend 100% of its useful time writing checkpoints to memory 
[1]. For these reasons, grows a need to search for other ways to prevent application 
failures. Through this paper we are going to develop a resilience testbed for automating 
steps, using Perl scripts, of starting the experimental application, fault injection, data 



 

4  

gathering and monitoring and keeping a log of every event of each experiment realized.  
 
The remainder of this paper is organized as follows. Section 2 gives a background for 
this research. Section 3 describes an overview of this testbed. Section 4 depicts all the 
resources: open source applications used and the targeted system. Section 5 shows in 
detail the methodology used. Section 6 describes experiments realized. Section 7 dis-
cusses results from experiments in the previous section. Section 8 gives the conclusions 
for the research and future work is given on Section 9. 
 
2 BACKGROUND 
One of the most challenging problems that will desperately need to be overcome by 
HPC systems will be avoiding, coping and recovering from failures.  The current and 
coming PetaFLOPS systems require the use and control of hundreds of thousands or 
even millions of processing, storage, and networking elements.  This great number of 
elements will increase the probability of facing failures, degrading the application per-
formance on these systems [1].  The progress of petascale computing will rely on the 
accuracy of fault tolerance achieved by the time.  
 
In the area of fault tolerance, fault injection makes one of the most important topics.  
Fault injection is the purposeful introduction of faults (or errors) into a target [2].  
Faults can be injected by either software or hardware [3].  On comparison the hardware 
injected faults requires specialized equipment, and may be hazardous for the target sys-
tem in use.  In the other hand software injected faults are harmless to the hardware and 
can replicate the effects of the hardware faults into the system and the testing applica-
tion. In a software based approach, or software implemented fault injection (SWIFI), 
there is more flexibility in terms of how to implement and detect the faults. However, 
the faults are limited in scope to those that are accessible via software [2]. Through this 
research we concentrate on building a resilience testbed to introduce software-based 
errors. 
 
3 OVERVIEW 
As we mentioned before our resilience testbed is composed of five main elements: 

1. Fault injection techniques 
2. Data gathering/monitoring 
3. Testing application 
4. Target System 
5. Analyzers for failure evaluation 

 
These are represented on figure 1.  Fault injection techniques were explored with the 
purpose of injecting them into the running application and/or to the target system.  The 
target system would be monitored while a testing application is being executed.  The 
data gathered from the monitoring would be archived and send to an analyzer for ex-
ploring if these analyzer being developed could detect the abnormal behavior of the 
system in presence of faults, proximity to failure and source of these faults injected. In 
the following section a detailed description of the resources used for each of the ele-



 

5  

ments will be provided. 
 
 
 
 
 
 
 
 
 
 
 
 
 
4 RESOURCES 
4.1 Fault Injection Techniques 
The fault injection techniques explored where: 

1. Register bit flips 
2. Network congestion  
3. Killing an instance of the application on one node 
4. Overloading 

Through these injected faults we could begin to appreciate abnormalities of the nodes 
of the system when faults are being injected. 
 
4.1.1 Register bit flips 
Registers are the inner processor memory.  Absolutely everything (variables, dataflow, 
etc.) during the operation of a processor will be received by the registers and sent to the 
processor for calculations.  Target bit flips in the EAX (Accumulator Register) register 
during the execution of an application will alter the flow of the program ending, hope-
fully, in the crash of the application. We explored the fault injections made by ptrace 
linux system call tipe FILE*, e.g., fopen() [1]. 

 
4.1.2 Network congestion 
Network congestion was explored as a fault injection technique.  The idea behind is to 
generate a congestion that would stress the target system, limitating it from normal exe-
cution. Hopefully this stress would prove to be so strong that would end in application 
termination. This would prove to be the most efficient fault injection method of the 
ones explored in this premature testbed (explained in the subsequent sections).  The 
type of network congestion injected is the unix command ping. 
 
4.1.3 Killing an instance of the application on one node 
Killing an instance of the application on one node is an “effective” way for instantly 
depriving a node from workload.  This serves completely for our final purposes, but 
fails in the intermediate steps (see results section).  
 

 
Fig. 1. Testbed overview 
 



 

6  

4.1.4 Overloading 
By overloading, is meant to indicate the process of running several instances of the 
same application.  Also this method proves to be efficient for final purposes but dan-
gerous in some aspects (see results section). 
 
4.2 Data gathering/monitoring 
Data gathering and monitoring was able by two open source resources: Ganglia and 
Ovis 1.1 
 
4.2.1 Ganglia 
Ganglia is a scalable distributed system monitor tool for high-performance computing 
systems such as clusters and grids. It allows the user to remotely view live or historical 
statistics (such as CPU load averages or network utilization) for all machines that are 
being monitored. Ganglia is based on a hierarchical design targeted at federations of 
clusters. It relies on a multicast-based listen/announce protocol to monitor state within 
clusters and uses a tree of point-to-point connections amongst representative cluster 
nodes to federate clusters and aggregate their state. It leverages widely used technolo-
gies such as XML for data representation, XDR for compact, portable data transport, 
and RRDtool for data storage and visualization. It uses carefully engineered data struc-
tures and algorithms to achieve very low per-node overheads and high concurrency. 
The implementation is robust, has been ported to an extensive set of operating systems 
and processor architectures, and is currently in use on over 500 clusters around the 
world. It has been used to link clusters across university campuses and around the 
world and can scale to handle clusters with 2000 nodes [4]. Ganglia haves four impor-
tant components [5]: 

1. gmond 
2. gmetad 
3. gmetric 
4. gstat 
5. web 
 

4.2.1.1 gmond 
The ganglia monitoring daemon (gmond) is a lightweight service that is installed on 
every machine monitored. This daemon uses a simple listen/announce protocol via 
XDR to collect monitoring state and then shares this information via XML over TCP. 
Gmond is portable and collects dozens of system metrics: CPU, memory, disk, network 
and process data. 
 
4.2.1.2 gmetad 
The ganglia meta daemon (gmetad) is a service that collects data from other gmetad 
and gmond sources and stores their state to disk in indexed round-robin databases. 
Gmetad provides a simple query mechanism for collecting historical information about 
groups of machines. Gmetad supports hierarchical delegation for creating manageable 
monitoring domains. 



 

7  

 
4.2.1.3 gmetric 
The ganglia metric tool is a commandline application that can be used to inject custom 
made metrics about hosts that are being monitored by ganglia. It has the ability to spoof 
messages as coming from a different host in case a user wants to capture and report 
metrics from a device where gmond is not running (like a network or other embedded 
device). 

 
4.2.1.4 gstat 
The ganglia stat tool is a commandline application that can be used to query a gmond 
for metric information directly. 
 
4.2.1.5 web 
The ganglia web frontend expresses the data stored by gmetad in a graphical web inter-
face using PHP. 
 
4.2.2 Ovis 1.1 
Ovis is a tool for intelligent analysis and monitoring of large computational clusters. 
Through an intuitive user-friendly GUI, OVIS provides 2D visualization capabilities of 
cluster health parameters as well as a number of statistical tools This allows ata-glance 
detection of abnormalities in a system or node depending on how the user has tuned the 
interface. Furthermore, the correlation engine provided with the distribution allows the 
user to analyze statistical relationships between different parameters of the system. 
Knowledge of these relationships can then greatly reduce the parameter space that the 
user needs to actively monitor in order to detect abnormal node behavior. This is in 
contrast to current cluster monitoring methodologies in which data is obtained from 
each node and a pre-defined rule set is applied, on a per-node basis, to any node whose 
value(s) cross a pre-determined threshold(s). Though this methodology is well suited to 
single nodes and small clusters, OVIS uses the statistical properties of these large col-
lections of statistically similar devices to add a great deal of intelligence to the process 
of monitoring and analysis as well as being able to determine many problems sooner 
than is possible using static thresholds [6].  
 
4.2.2.1 Ovis 1.1 data gathering 
The ovis_RRD_XXX scripts work together to read from RRDs such as those populated 
by Ganglia, via the RRDtool perl interface.  They do not interact with Ganglia itself. 
The assumption is that there exists a main directory containing subdirectories, one for 
each compute node. Within those subdirectories are the RRDs for that node, one for 
each different variable to be monitored. Each RRD could have multiple timescales be-
ing considered (e.g., for data taken on 5 second intervals, the RRD may contain: 1 sin-
gle datapoint AVERAGE, 2 minute AVERAGE, 10 minute AVERAGE, etc.), but it 
must correspond to one quantity only (e.g., cpu1 temp). The rrd names are assumed to 
be <variable>.rrd, e.g., cpu1 temp.rrd [6].  
 



 

8  

4.3 Testing application 
The application in use for testing purposes during this testbed are the HPCC parallel 
benchmarks.  Also the open source application Cbench is used for nicely running and 
analyzing output of these benchmarks. 
 
4.3.1 HPCC parallel benchmarks 
The HPCChallenge suite of benchmarks will examine the performance of HPC archi-
tectures using kernels with memory access patterns more challenging than those of the 
High Performance Linpack (HPL) bench- mark used in the Top500 list. The HPCChal-
lenge suite is being designed to augment the Top500 list, provide benchmarks that 
bound the performance of many real applications as a function of memory access char-
acteristics e.g., spatial and temporal locality, and provide a framework for including 
additional benchmarks. The HPCChallenge benchmarks are scalable with the size of 
data sets being a function of the largest HPL matrix for a system. The HPCChallenge 
benchmark suite has been released by the DARPA HPCS program to help define the 
performance boundaries of future Petascale computing systems. The suite is composed 
of several well known computational kernels (STREAM, High Performance Linpack, 
matrix multiply – DGEMM, matrix transpose, FFT, RandomAccess, and band-
width/latency tests) that attempt to span high and low spatial and temporal locality 
space [7].  
 
4.3.1 Cbench 
Cbench [11] is: 

• a Perl-based scripting framework for building, running, and analyzing the out-
put of various opensource codes 

• a highly useful toolkit for stressing a system for maintenance or acceptance test-
ing 

• an easy way to benchmark and analyze a cluster using any of a variety of tests 
• a project created by HPC system administrators and engineers at Sandia Na-

tional Labs 
• as a toolkit, there are many ways that Cbench can be utilized for many different 

Linux cluster testing tasks 
 
4.4 Target system 
For the target system, Oak Ridge National Laboratory, Computer Science and Mathe-
matics Division XTORC cluster was used. 
 
4.4.1 XTORC cluster 
Table 1. System specifications 
System name XTORC 
Number of nodes 64 
Processors per node 1 
CPU type Pentium VI 
CPU speed 1695.7MHz 
Memory per node 768MB 



 

9  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.5 Analyzers for failure evaluation 
The analyzers are outside of the scope of this research.  This research results focused on 
archiving gathering monitored data from each fault injection experiment done in the 
target system.  Results where passed on to a set of collaborators [8] where they ex-
plored clustering techniques and visualization tools using the open source applications: 
R and Ggobi.4.5.1 R 
R is an integrated GNU project suite of software facilities for data manipulation, calcu-
lation and graphical display [9]. It includes: 

• An effective data handling and storage       facility 
• A suite of operators for calculations on       arrays, in particular matrices 
• A large, coherent, integrated collection of    intermediate tools for data 

analysis 
• Graphical facilities for data analysis and    display either on-screen or on 

hardcopy 
• A well-developed, simple and effective programming language which in-

cludes conditionals, loops, user-defined recursive functions and input and 
output facilities. 

 
4.5.2 Ggobi 
Ggobi is an open source visualization program for exploring high-dimensional data. It 
provides highly dynamic and interactive graphics such as tours, as well as familiar 
graphics such as the scatterplot, barchart and parallel coordinates plots. Plots are inter-
active and linked with brushing and identification [10]. 
 
5 METHODOLOGY 
The organization of the system being developed has the following components (see fig-
ure 3): 

1. Event log 

 
Fig. 2. XTORC cluster 
 



 

10  

2. RRD starter  
a. RRD reader  

3. Start the application 
4. Wait until the application finishes while injecting faults 
5. RRD killer 
6. Data archival 

 
5.1 Event log  
For keeping an accurate record of what happens in each experiment an event log is in-
corporated to the system.  This event log will keep track of: start of the appplication, 
type and time of fault injected, and end of the application. The event log will later be 
used to prove or disprove the predictions made by the analyzers for failure evaluation.  
Also this log is useful for understanding the results. 
 
5.2 RRD starter  
The ovis RRD launcher launches readers, one for each subdirectory of the main direc-
tory where the RRD databases are kept, these correspond to compute nodes. Coordi-
nates the start times of all the ovis RRD readers if a start time is not specified. It can use 
a predefined header file, as mentioned, with respect to the ovis RRD reader or it will 
create a header that is the union of all the subdirs rrd names [6].  
 
5.2.1 RRD reader 
The ovis RRD reader will read from the RRDS for a single node. It will extract info 
from the RRDS for that node, and determine for each RRD, what the minimum  meas-
urement interval is (e.g., in the example above it will discern that the 1 datapoint aver-
age is the shortest interval (taken on 5 second intervals). It will then compare across all 
the RRDS and only collect data from those whose shortest interval corresponds to the 
global shortest interval. For example, if 5 seconds is the shortest interval across all 
RRDs, then data will only be collected from RRDs who have a quantity whose shortest 
interval is 5 seconds [6].  
 
These readers produce the data files, and optionally the header file. If the header file is 
being produced by the ovis RRD reader then it will check all possible RRDS for inclu-
sion in the set. If an existing headerfile is spcified on the command line, then only those 

 
Fig. 3. Research methodology 
 



 

11  

quantities will be considered for inclusion in the set [6].  
 
5.3 Start of the application 
Two steps done by Cbench start the application.  First the gen_jobs script creates a spe-
cific job, for a specific benchmark, problem size and number of processors.  After this 
job has been created, the start_job scripts would let us nicely start our benchmark inter-
actively or using batch system. 
 
5.4 Wait until the application finishes while injecting faults 
We divide this segment in two parts: inject faults while application is still running and 
after the application finishes check for failure of the application. 
 
5.4.1 Inject faults 
The faults injected are listed in section 4.1.  The tools used primarily for injecting these 
faults are the cluster command control (C3) [12] tools.  These tools will let me run from 
head node any kind of executable in any node desired.  Also they would let me kill an 
instance of the application on any node desired.  
 
5.4.2 Check for failure 
The check of the failure of the system is done efficiently by using the Cbench script 
output_parse.  This script, besides letting you see the results of the running application 
and generate performance plots in gnuplot, describes at what percent did the benchmark 
executed.  With this output we can be certain of if the application really failed or just 
ended. 
 
5.5 RRD killer 
The ovis RRD killer script will kill all processes with ”ovis RRD reader” in the name 
for ease of killing every instance of this process [6].  Also for the process of killing the 
RRD reader, a delaying time can be specified in the input file to run the experiments.  
This can nicely shutdown the data monitoring process on the target system. 
 
5.6 Data archival 
The data archival process consists on gathering all the data generated for the specific 
experiments and build tarballs of these data with the experiment name. 
 
6 EXPERIMENTS 
For the experiments we developed an input file which you specify certain parameters of 
the experiment at use. 

 
 
 
 
 
 
 

 
Fig. 4. Experiment input file parameters 
 
 
 
Fig. 3. Research methodology 
 
 
 Fig. 4. Experiment input file parameters 
 



 

12  

The parameters are listed as: 
1. experiment_name - name of the experiment always haves to be enclosed in 

brackets. 
2. workload - type of workload being run by the application, e.g. benchmark at 

hand. If you are only running an unix command you can specify it too in this 
parameter (ex. workload = sleep 2). 

3. number_nodes - number of nodes that you wish to execute your workload. 
4. mpinodes_inputfile - this is the input file path of the name of the nodes or 

hosts that are going to be used for run the experiment.  Also known as the 
lamboot input file, or the file where the name of the host from which the MPI 
environment will be set up by lam. 

5. delaytime - delay time from the start/stop of the data gathering to the 
start/stop of the application.  Given in seconds. 

6. faultinjection - specify the path to the executable of the given fault, or exe-
cute any custom made command.  

 
Also there is a tool from my system to specify any number of experiments in this input 
file.  See figure 5. A custom option was made for the option of running only one of the 
experiments or to run them all in order from the first in top of the input file to the last in 

 
 Fig. 5. All experiments in the input file 
 
 
 
 



 

13  

the bottom of the input file. At last the figure 6 shows us the options to run the script 
developed to run all this system the experiments.pl perl script 
 

In the following table 2 we can see the list of experiments mad 
 
Table 2. Experiments list. 

Experiment name Workload Fault injection 
sleep12hrs none none 
hpcc_onenode hpcc none 
hpcc_allnodes hpcc none 
kill_fault hpcc kill instance app 
network_fault hpcc infinite ping 
overload hpcc several  instances 

 
The purpose of first three experiments mentioned on table 2 was to test the system de-
veloped and provide initial and control groups of data sets to the collaborators [8] 
working with the analyzers for failure evaluations. 
 
The kill_fault was described in section 4.1.3.  In that moment we introduced as a suc-
cess on our final purposes that is to make the application fail.  But we also mention that 
this method of fault injection fails on intermediate steps.  In a more detailed reasons, we 
should analyze two cases: 1) running a parallel application in the target system, 2) run-
ning several instances of a serial application in the target system. For case one this 
method fails in showing us how the system would behave in the proximity of encoun-
tering failures.  It also would fail in representing which nodes behave abnormally as the 
fault injected nodes.  All these reasons try to approach the first case being a message 
passing interface (MPI) parallelized application.  If an instance of this application is 
killed on one of the nodes of the targeted system the whole application will fail in-
stantly.  Creating a whole system application failure without none or minimum trace of 
which of the nodes where fault injected.  For the second case this method is fully suc-
cessful, but for as we moved on this research we became more interested on fully paral-
lelized applications (case 1) and discarded this experiment. 
 
The network_fault is the most useful experiment we developed in a short period of 
time.  The network_fault consisted on running infinite pings on several nodes, making 
the system stress and the application fails eventually leaving an interesting trace in its 
monitoring/gathered data.  The results of this experiment will be shown in the next sec-

 
 Fig. 6. Usage of the experiments.pl script 
 
 
 
Fig. 3. Research methodology 
 
 
 Fig. 4. Experiment input file parameters 
 
 
 
Fig. 3. Research methodology 
 

 
 Fig. 4. Experiment input file parameters 
 
 
 
Fig. 3. Research methodology 
 

 
 Fig. 4. Experiment input file parameters 
 
 
 
Fig. 3. Research methodology 
 



 

14  

tion. 
 
The overload experiment is based on section 4.1.4 overloading injection fault.  During 
this experiment we ran several instances of the hpcc parallel benchmark on the system.  
As said in section 4.1.4 is an efficient but dangerous method.  This statement is based 
on actual results.  The results of these experiments are a chain of systems failures that 
caused in a few seconds the failure of fifteen nodes.  For these reasons we took precau-
tions for a shorter time term to not re-run this experiment again. 
 
7 RESULTS 
In this section we are going to describe the results of the experiment network_fault. 
Through the following figures 7, 8 and 9 we can see a report in which each sin the plot 
square represents a different node.  The node is identified by the number in top of the 
square.  in all the figures the squares that just show a straight blue line and no sight of 
movement is because those nodes where not used in that experiment or more likely they 
where dead at the time of the experiment. We encounter three different behaviors: 1) the 
node quickly finished the workload, 2) the node appears to be in pressure of workload 
through all the experiment and 3) the node starts doing normal workload and at some 
point increases very quickly the workload on it. 
 

 
 
 
 
 
 
 
 
 
 

 
 Fig. 7. Loads per processors vs. Periods of 15 seconds 
 
 

 
 Fig. 8. Running processes vs. Periods of 15 seconds 
 
 



 

15  

 
 
 
 
 
 
 
 
 
 
 
 
For the first case, appears to be that the hpcc benchmarks does not divides the tasks 
equally among all the nodes.  For the second case, in my opinion these nodes could not 
finish their workload because they where waiting on sending and receiving messages 
from the nodes in the third case.  In the third case, which can appear obvious, are the 
fault injected nodes.  The ones that are marked as blue (nodes 10, 20, 32 and 40) are the 
first ones that the infinite ping fault was injected.  In time they gather a lot of network 
congestion and workload on the fault injected nodes.  Even so the application kept run-
ning so we injected three more infinite pings on nodes 36, 37 and 41 marked as red.  
This last fault injection caused the application to fail. 
 
 
Looking at the event log in the figure 10 we can actually see, compare and validate our 
predictions.  Also we can use a tool from Cbench to validate that the experiment really 
failed. See figure 11. 

 
 
 
 
 
 
 
 
 
 

 
 Fig. 9. CPU system % vs. Periods of 15 seconds 
 
 

 
Fig. 10. Event log of experiment network_fault 

 
 
 
Fig. 3. Research methodology 
 
 
 Fig. 4. Experiment input file parameters 
 
 
 
Fig. 3. Research methodology 
 
 
 Fig. 4. Experiment input file parameters 
 
 
 
Fig. 3. Research methodology 
 

 
Fig. 11. output_parse Cbench script validates failure 

 
 
 
Fig. 3. Research methodology 
 
 



 

16  

8 CONCLUSION 
During this research we can conclude a great success on the educational phase.  Learn-
ing about fault tolerance, deeper knowledge in high performance computing, monitor-
ing software and Perl scripting where just a few things that can be mentioned.  Besides 
the educational phase, the system efficiently automates the steps of: fault injection, ap-
plication start, event log, data gathering/monitoring start and shutdown. 
 
9 FUTURE WORK 
Our future work would concentrate on exploring more fault injection techniques, ex-
ploring the integrity of the fault injections made and extended research on more com-
plex HPC systems.  Also this project is planned to be continued as a Senior Design En-
gineering, in which stage would be to build a complete package and integrate it to OS-
CAR.  OSCAR (Open Source Cluster Application Resources) OSCAR is a snapshot of 
the best known methods for building, programming, and using clusters. It consists of a 
fully integrated and easy to install software bundle designed for high performance clus-
ter computing [13].. 
 
Acknowledgement 
 
I would like to thank  my mentors  for the opportunity to work on this project. Also,  I 
would like to thank Thomas Naughton for his unconditional and  continued support. 
The persons who wrote my recommendation letters: Prof. Idalides Vergara and Dr. Ya-
hya Masalmah; without their support this opportunity would not be possible. Finally, 
special  thanks go  to Debbie McCoy, who made provisions for this research experi-
ence.   
 
REFERENCES 
[1] B. Schroeder, and G. Gibson, “Understanding Failures in Petascale Computers,” 

Computer Science Department, Carnegie Mellon University, SciDAC 2007. 
[2] T. Naughton, W. Bland, G. Vallée, C. Englemann, and S. Scott, “Fault Injection 

Framework for System Resilience,” Computer Science and Mathematics Division, 
Oak Ridge National Laboratory, Resilience ’09, June 9, 2009, Munich, Germany.  

[3] M. Hsueh, T. Tsai, and R. Iyer,  “Fault injection techniques and tools,” Computer, 
30(4): 75-82, Apr 1997.  

[4] Ganglia. Available at: http://ganglia.info/ (Last accessed: August 2009). 
[5] About ganglia. Available at: http://sourceforge.net/apps/trac/ 

ganglia/wiki (Last accessed: August 2009). 
[6] J.M. Brandt, A.C. Gentile, P. P. Pébay, and M.H. Wong, “Monitoring Computational 

Clusters with OVIS,” Sandia National Laboratories, SAND2006-7939, December 
2006, New Mexico. 

[7] J. J. Dongarra, and P. Luszczek, “Introduction to the HPCChallenge Benchmark 
Suite,” University of Tennessee Knoxville and Oak Ridge National Laboratory, 
DARPA HPCS FA8750-04-1-0219, December 13, 2004, Tennessee. 

[8] S. Quiñones, E. Avilez, Y. Camacho, “Detecting Anomalies for High Performance 
Computing Resilience,” Oak Ridge National Laboratory, FAST interns, summer 



 

17  

2009, Tennessee. 
[9] R. Available at: http://www.r-project.org/ (Last accessed: August 2009). 
[10] Ggobi. Available at: http://www.ggobi.org/ (Last accessed: August 2009). 
[11] Cbench - Scalable Cluster Benchmarking and Testing. Available: 

 http://sourceforge.net/apps/trac/cbench/#CbenchOverview (Last accessed: August 
2009). 

[12] Project C3 – Cluster Command and Control.  Available at: 
http://www.csm.ornl.gov/torc/C3/index.html (Last accessed: August 2009). 

[13] OSCAR – Open Source Cluster Application Resources. Available at: 
http://www.csm.ornl.gov/oscar/ (Last accessed: August 2009). 
 
 
 


