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Outline

• High average power Ti:sapphire at ALS
• Femtosecond synchronization at LCLS
• H- stripping concepts

• I’ll describe my projects here, but there are many others at 
LBNL, including
– Laser wakefield acceleration (W. Leemans)
– Photoinjectors for accelerators (H. Padmore)
– Ultrafast science (R. Kaindl)
– High harmonic generation (O. Gessner)



Femtosecond electron “slicing” at ALS
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High power tisaf laser system

• Signals from both arms are synchronized to enable pump/probe 
experiments

• The system is synchronized with the electron storage ring by 
synching the oscillator in a PLL
– Electron bunches arrive at 500MHz
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Component layout on tables
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8-Watt regenerative amplifier

• Astigmatism in crystal is compensated by tilted curved mirror
• Pockels cell is BBO, to minimize piezoelectric ringing
• Crystal is cooled to ~60 K, when pumped by 60W (3mJ, 20kHz)

– 90W cooler
• Output 8W at 20kHz, after 5 round trips (13% optical efficiency)
• Small signal gain ~20 per roundtrip

last pulses before switchout:



Cryo cooled double pass power amp

• 300W cryo cooler
• ~130 K when pumped with 180W
• Vacuum is 1.5*10-7 Torr with cryo off, 

6*10-9 Torr when on
• Chamber moves vertically with cryo on, 

isolated from table
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Double pass amp layout and results

• Pumps are 90W, 10kHz
• Pump beam is Gaussian, focused to about the same size as signal

– ~300 microns 1/e2 radius (calculated)
• Overall output energy instability < 5% peak-to-peak
• Two crystal chamber enables upgrade to 40kHz

One pump Two pumps

Reprate 10kHz 10kHz

Ein 0.4mJ 0.4mJ

Eout 2mJ 3mJ

Efficiency 22% 16%



Calculated thermal distribution in the 
pumped crystal

• ANSYS finite element calculation with realistic thermal input
• Temperature-dependent thermo-optic coefficient from literature (one average 

value used)
• Computed focal length was within 2x of analytic calculation

– Thermal lens is weak compared with system lenses
– Makes 0.1% effect on calculated beam parameters
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2 x 90W = 180W
Temperature 130 K
Focal length ~6m

Appl. Phys. Lett. 56, 1831 (1990)



Gain saturation measurement and fit

• One-dimensional saturation model, fit to measurement
– Small signal gain and spot size are fit parameters
– Model is used to optimize system performance

• In this case, one pump at 9mJ
• At 2mJ out, fluence is ~2.3 times saturation, at 250mm radius (compared to ~300mm 

from optical design)
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Compact, transmission grating-based 
pulse compressor

• 6mm quartz substrate grating, etched on one side, AR on the other
• Solves thermal phase distortion problem with metallic gratings
• >75% overall efficiency



Passively stabilized delay cell

• Herriot delay cell designed so that 
input/output beam parameters are 
the same
– 12 roundtrips

• Beams separated in angle are 
picked off far from the cell

• Low thermal expansion rod 
maintains constant delay as table 
expands
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RF plants (16)
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We can synchronize lasers with low jitter
using RF

• We stabilized two lasers at 
100MHz and 2200MHz

• Our decision to use 2856MHz 
is based on this result

• Typical scheme, but higher 
frequency than commercial 
lock electronics (~500MHz)
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An optical interference scheme 
synchronizes lasers to <6fs
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1. High stability laser frequency lock to atomic absorption line
2. Low noise amplitude modulation

3. Interferometric line stabilization scheme
4. Temperature and humidity controlled fan-out and reference line

5. Diodes operated to minimize amplitude-to-phase conversion
6. Low noise detection of RF phase

7. Feedforward correction for thermal coefficient of dispersion 

Multiple factors must be controlled to 
ensure long term temporal stability

RF out

+50MHz

freq.
shifter

Rb
freq.
locker

100MHz

ref.
arm

100MHz beat

AM

RF in

LLRF controller

RF out

RF in

LO in

CW
fiber
laser

RF in



1560nm
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A dual channel interferometer was used
to measure perturbations in situ

•Made of two single channel Michelsons in a Mach-Zehnder configuration
•The heterodyne Michelson interferometer is the backbone of the synch 
system

–Robust, precise, thoroughly tested
–Our unique configuration has advantages over typical designs 



• Tunnel fiber was two 2.8km 
long loops

• Fiber was plain network 
cable, 12 strand, run in 
open cable conduit

• Goal was to demonstrate 
this location is OK, since it 
is cheaper to install here

We packaged a dual-channel 
interferometer for tests at SLAC



Interferometer measurements were 
stable to 6 waves over 10 days

Short term, 10Hz to 40MHz
0.25fs RMS with loop closed

10 day run, about 6 optical waves
The slope was found to be a computation
artifact, so actual drift is less



We stabilize a single frequency laser
to ~5x10-10 using saturated absorption 
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to minimize phase error

• Peak in AM/PM curve provides “zero-slope” operating point
– +/- 10% in power produces <10fs timing shift
– Power can be regulated to <10% by modulating amplitude of RF to 

frequency shifter, feeding back on average photocurrent
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The feed-forward scheme suppresses
short term perturbation

• We perturbed one fiber path with a ~1ps, 1Hz signal, and observed the 
relative phase between the two channels

• We could null the effect of this perturbation by adjusting one factor, with 
perturbations from other effects remaining

• This proves the “measure and feed forward” scheme
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We have demonstrated sub-100fs RF 
synch over 2km and 200m

• 2km fiber is LAN fiber around lab site
• 200m fiber is strung around lab walls

68fs RMS
2km

32fs RMS
200m



IR vs UV

• Calculations say IR can be used, but with high magnetic field to strip excited H-
– To make magnet easier, focus is on UV laser

• Why push for IR:
– Cheaper, more efficient laser (accompanied by reliability and stability)
– Easier to maintain phase front quality in resonator, transport optics
– Lower absorption in resonator mirrors (better finesse and thermal)
– Less optics damage than from UV
– Easier to actively maintain resonance condition 
– No “cracking” of hydrocarbons to contaminate mirrors with carbon

• Downside: high field in subsequent magnet
– Is this worse than the above headaches?

• Whole system has to be evaluated to optimize



Overall technical approach

• Assume 1064nm for stripping, higher magnetic field strip after
– 45 degree incidence, focused beam for Doppler divergence

• Reduce the laser to a well-established commercial technology
– About 200W average during a ~1ms pulse, input to cavity
– High power diode-pumped Nd:YAG amps 
– Stable modelocked lasers with clock synchronization 

• The wavelength happens to fit the application, for transverse excitation 
• Reduce laser power by using a buildup cavity

– 99.99% mirrors commercially available at 1064nm
– Loss is probably transmission rather than absorption (less heating) 
– 4-mirror cavity to independently control focus, cavity length
– Conservative 100x buildup factor

• Challenge is to reliably control the coupling to the cavity
– Alignment of the laser through the transport system
– Locking the cavity to the optical carrier
– Control for thermal perturbations (active and passive)
– Radiation damage to components
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