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Why the interest in CCS ?

(Carbon Capture and Storage /Sequestration)

* 1992 U.N. Framework Convention on Climate
Change called for “stabilization of greenhouse
gas concentrations in the atmosphere at a level
that would prevent dangerous anthropogenic
interference with the climate system”




Recent assessments indicate potentially serious impacts for
more that a 2°C rise in average global temperature

Global avg. Atmospheric Required change
temperature stabilization in global CO,
increase over COg.equiv (PPM) emissions from
pre-industrial (2005=375 ppm) 2000 to 2050

20-24°C 445 — 490 -85% to -50%

Source: IPCC, 2007

Climate stabilization will require urgent action
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Electricity + Vehicles Fossil fuels = 40% of CO,
emit = 75% of all CO, and 70% of U.S. electricity




Stabilizing atmospheric GHG concentrations will require
large reductions in CO, emissions. But ...

Fossil fuels will continue to be used for many decades
—alternatives not able to substitute quickly

CCS is the ONLY way to get large CO, reductions from
fossil fuel use—a potential bridging strategy

CCS can also help decarbonize the transportation sector
via low-carbon electricity and hydrogen from fossil fuels

Energy models show that without CCS, the cost of
mitigating climate change will be much higher

Models show increasing need for CCS

as stabilization goal tightens Without CCS the cost of

stabilization increases sharply
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Status of CCS technology
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CO2 Separation and Capture

Absorption Adsorption Cryogenics Membranes Microbial/Algal
Systems

Chemical Adsorber Beds Gas Separation

MEA Alumina kPo\yphenyleneoxide
Caustic Zeolite Polydimethylsiloxane
Other Activated C

Gas Absorption

Physical Regeneration Method

\— Polypropelene
Selexol Pressure Swing

Rectisol Temperature Swing Ceramic Based
Other Washing Systems

Choice of technology depends strongly on application

* Fossil fuel power plants

= Pulverized coal combustion (PC)
= Natural gas combined cycle (NGCC)
= Integrated coal gasification combined cycle (IGCC)

* Other large industrial sources of CO, such as:

= Refineries, fuel processing, and petrochemical plants
» Hydrogen and ammonia production plants

= Pulp and paper plants

= Cement plants

— Main focus is on power plants, the dominant source of CO, —
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Overview of Geological Storage Options Produced oil or gas
1 Depleted oil and gas reservoirs oo o Injected CO.

2 Use of CO, in enhanced oil and gas recovery z AR R 5 51 Stored CO.

3 Deep saline formations — (a) offshore (b) onshore — J

4 Use of CO, in enhanced coal bed methane recovery

Source: IPCC, 2005




Pre- and post-combustion CO, capture technologies are
commercial and widely used in industrial processes; also
at several gas-fired and coal-fired power plants, at small
scale (~40 MW); CO, capture efficiencies are typically
85-90%. Oxyfuel capture is still under development.

CO, transport via pipelines is a mature technology.

Geological storage of CO, is commercial on a limited
basis, mainly for EOR; several projects in deep saline
formations are operating at scales of ~1 Mt CO, /yr.

Large-scale integration of CO, capture, transport and
geological sequestration has been demonstrated at several
industrial sites (outside the U.S.) — but not yet at an
electric power plant at full-scale.

Petcoke Gasification to Produce H, Coal Gasification to Produce SNG
(Coffeyville, Kansas, USA) (Beulah, North Dakota, USA)




Puertollano IGCC Plant
: (Spain)

Buggenhum

IGCC Plant
(The Netherlands)

BP Natural Gas Processing Plant
(In Salah, Algeria)
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Post-Combustion CO, Capture
at a Gas-Fired Power Plant

Bellingham Cogeneration Plant

(Bellingham, Massachusetts, USA)
E.S. Rubin, Carnegie Mellon

Post-Combustion CO, Capture
at Coal-Fired Power Plants

Shady Point Power Plant Warrior Run Power Plant
(Panama, Oklahoma, USA) (Cumberland, Maryland, USA)

E.S. Rubin, Carnegie Mellon
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Oxy-Combustion CO, Capture
from a Coal-Fired Boiler

ey

30 MW; Pilot Plant (~10 MW,) at
Vattenfall Schwarze Pumpe Station
(Germany)

CO, Pipelines in the Western U.S.

> 3000 miles of pipeline
~40 MtCO,/yr transported

E.S. Rubin, Carnegie Mellon
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Project

Operator

Geological
Reservoir

Injection
Start Date

Injection
Rate

(MtCO.,/yr )

Sleipner
(Norway)

StatoilHydro

Saline
Formation

1996

1.0

Weyburn
(Canada)

EnCana

Oil Field
(EOR)

2000

1.2"

In Salah
(Algeria)

Sonatrach, BP,
StatoilHydro

Depleted
Gas Field

2004

1.2

Snohvit
(Norway)
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Geological Formations in North America

Deep Saline Formations

E.S. Rubin, Carnegie Mellon

Geological Storage of Captured CO, with
Enhanced Oil Recovery (EOR)

Weyburn Field, Canada

* Regina
Weygburn

Saskatchew:
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CCS at a Coal-Fired Power Plant with

Storage in a Deep Saline Formation
(Pilot plant scale)

-CO; Pipeline
Slipstream Capture

CO, Capture
and Separation

14 - | -
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20 MW capture unit at
AEP’s Mountaineer
Power Plant
(West Virginia)

E.S. Rubin, Carnegie Mellon

Still Missing

Full-scale power plant demo #1
Full-scale power plant demo #2
Full-scale power plant demo #3
Full-scale power plant demo #4
Full-scale power plant demo #5
Full-scale power plant demo #6
Full-scale power plant demo #7
Full-scale power plant demo #8
Full-scale power plant demo #9

Full-scale power plant demo #10

E.S. Rubin, Carnegie Mellon
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Establish the reliability, safety and true cost of CCS
in full-scale power plant applications

Hel{) resolve legal and regulatory issues regarding
geological sequestration

Help address issues of public acceptance

Begin reducing future costs via learning-by-doing

- Cost per project = $1 billion (install/operate CCS, 400 MW, 5 yrs)

Financing large-scale projects has been a major hurdle

Basin Electric Power Cooperative
Post-combustion capture (ECO2® ammonia-based process);
Antelope Valley Station, 120 MW flue gas; Beulah, N.D

Hydrogen Energy International LLC
New IGCC plant (coal-petcoke w/ full Rectisol capture); Kern County, CA
> 2 million tons/yr CO2; storage via EOR.

American Electric Power Company, Inc.

Post-combustion capture (Alstom chilled ammonia process);
Mountaineer Power Plant, 235 MW flue gas, New Haven, WV
1.5 million tonnes/yr CO2; storage in two saline formations.

Southern Company Services, Inc.
Post-combustion capture (MHI amine-based process);
Alabama Power’s Plant Barry, 160 MW flue gas; near Mobile, AL.

Up to 1 million tonnes/yr CO2; storage in saline formations + possible EOR.

Summit Texas Clean Energy, LLC
New 400 MW IGCC plant (Siemens w/ 90% capture); near Midland, TX.
2.7 million tonnes/yr CO2; storage via EOR in Permian Basin
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Map shows
operating plus
proposed or
planned projects
in the U.S. and
Canada. They
encompass power
plants, industrial
sources and
research projects
spanning a large
range of scale.
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The GreenGen Project
(Tianjin, China)

2006-2008 2010-2012 2013-2015

Partners include: China Datang Corp. [t 3 H S =
China State Development and H

Investment Corp., China Guodian o a &
Corp., China Huadian Corp., China ] : L ﬁkf})}}{%ﬁa%
Power Investment Corp., China | ¥ Ty g T gl pi e 2
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The cost of CCS

Choice of Power Plant and CCS Technology
Process Design and Operating Variables
Economic and Financial Parameters

Choice of System Boundaries; e.g.,

= One facility vs. multi-plant system (regional, national, global)
= GHG gases considered (CO, only vs. all GHGs)
= Power plant only vs. partial or complete life cycle

Time Frame of Interest

= First-of-a-kind plant vs. n*” plant
= Current technology vs. future systems
= Consideration of technological “learning”
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* Cost of CO, Avoided ($/ton CO, avoided)
($/MWh)  — ($/MWh)

7 CCS Jreference

« Cost of Electricity (COE) ($/MWh)

_ (TCC)(FCF) +FOM

CHET0MW) | VOMF (HR)(FC)

Assume high power plant efficiency

Assume high-quality fuel properties

Assume low fuel cost

Assume EOR credits for CO, storage

Omit certain capital costs

Report $/ton CO, based on short tons

Assume long plant lifetime

Assume low interest rate (discount rate)
Assume high plant utilization (capacity factor)
Assume all of the above !

... and we have not yet considered the CCS technology!
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® A desktop/laptop computer model
developed for DOE/NETL; free and

publicly available at: Integrated

www.lecm-online.com Environmental
- Control
Provides systematic estimates of Model
performance, emissions, costs and Carbon Sequestration Edition
uncertainties for preliminary design of:

PC, IGCC and NGCC plants

All flue/fuel gas treatment systems

CO, capture and storage options
(pre- and post-combustion, oxy-
combustion; transport, storage)
Major update in late 2009

SCPC
Natural New Current
Plants Gas Coal Coal
with Plants Plants Plants

CCs
IGCC

(0]
o

i
(]

Cost of Electricity ($/MWh)
N (e}
(@] o

02 03 04 05 06 07 08 09 1.0
CO, Emission Rate (tonnes / MWh)
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Incremental Cost of CCS re/ative

fo same plant type without CCS
based on bituminous coals

Increases in capital cost ($/kW)
and generation cost ($/kWh)

Supercritical
Pulverized
Coal Plant

Integrated
Gasification
Combined
Cycle Plant

~ 60-80% ~ 30-50%

The added cost to consumers due to CCS will be
much smaller, reflecting the number and type of
CCS plants in the generation mix at any given time.

Power Plant System

(telative to a SCPC
plant without CCS)

Deep aquifer storage

New Supercritical
Pulverized Coal
Plant

~ $70 tCO,

New Integrated
Gasification
Combined Cycle
Plant

~ $50 tCO,

Enhanced oil recovery
(EOR) storage

Cost reduced by ~ $20-30 /tCO,

» Capture accounts for most (~80%) of the total cost
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Added fuel input (%)

Power Plant Type per net kWh output

Existing subcritical PC ~40%

New supercritical PC 25-30%

New coal gasification (IGCC) 15-20%

New natural gas (NGCC) ~15%

Changes in plant efficiency due to CCS energy requirements
also affect plant-level pollutant emission rates (per MWh).
A site-specific context is needed to evaluate the net impacts.

Approx. % of
Total Regm'’t

Component

Thermal Energy ~60%

CO, Compression ~30%

Pumps, Fans, etc. ~10%




What is the potential for
advanced capture technology?

Better Capture Technologies Are Emerging

4
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* Method I: Engineering-Economic Analysis

= A “bottom up” approach based on engineering
process models, informed by judgments regarding
potential improvement in key parameters

Percent Increase in COE
Percent Increase in COE

5]
=]

19% -28%
reductions in
COE w/ CCS

Advanced

Subcritcal Oxyluel

(Cryogenic ASU)
697

o~
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~
>

Percent Increase in COE
w
s

—

o

Source: DOE/NETL, 2006




IGCC Technologies Pulverized Coal Technologies

7% below
no CCS

$/MWh ($2009)

31% reduction 27% reduction

Source: DOE/ NETL, 2010

* Method 2: Use of Historical Experience Curves

= A “top down” approach based on applications of
mathematical “learning curves” or “experience
curves” that reflect historical trends for analogous
technologies or systems
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o8 RD&D

® Cost trends modeled as a S
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® (ase studies used for power plant components:
= Flue gas desulfurization systems (FGD)
= Selective catalytic reduction systems (SCR)
= @Gas turbine combined cycle system (GTCC)
Pulverized coal-fired boilers (PC)
Liquefied natural gas plants (LNG)
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Hydrogen production plants (SMR)
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% REDUCTION
* Plant-level learning
curves developed
from component-
level analyses

N
[$)]

N
o

Upper bound of
ranges are similar
to estimates from
“bottom-up”
analyses

Percent Reduction in COE
) o

(¢)]

NGCC PC IGCC Oxyfuel

* Significant potential beyond 2020 to
reduce the cost of carbon capture via:

= New or improved CO, capture technologies

= Improved plant efficiency and utilization
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What are the challenges for
carbon capture beyond 2020?

CRITICAL CHALLENGES

Parasitic load Cost-effective oxygen

Enorgy-efficient capture processes

Scale-up Application fo existing fleet Integration with advanced fusl conversion systems

Post-Combustion —@g)

Technical
Challenges and
Research Pathways
for Advanced
Capture Concepts

Pre-Combustion 1
) Oxygen Supply

Oxy-Combustion —@—]

RESEARCH PATHWAYS

CROSS CUT PATHWAYS

L

Chemical Sclvents Physical N
Amines® Metal arganic
Advanced amines”™ framewarks"

1
Agueous Ammoniat NLICO.
Physical Solvents Mamb
Tonic liquids® hybridst
Enzymatic CO,
N,{CO. Membranes v 2
B L
Membranesamine hybrids- PIOCesaey
Enzymatic CO, processes'

Chemical Scrbents
Amine-enriched sorbentst
Metal organic framewarkst

Chemical Sarbents
Metal organic frameworks*
Physical Solvents Physical Sorbents
Glyeol® Metal organic frameworks'
o
IMelh ?m:u " Membranes
ome Ui Palymer, caramic, hollow fiber
membrane supportst

MNovel
Hydratest

Cryogenic oxygen production (distillation)*
lan transport membranes®
Ceramic autcthermal reactar (CAR)L

Conventional oxyfuel with recirculation®
Oxygen transport membranes*
Chemical looping-

Heat and pressure
integration with base
power plant

CO, compressicn
Co-sequestration
0, quality

(oxy- and post-

combustion)

GO, quality
(permitting/transportation)

Post combustion capturs:
G0, recycle to concentrate
flue gas

© Commercially available
F Pilot Scale
L Labaratory scale/conceptual

Source: DOE/ NETL, 2009
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Technology
Readiness Levels

= Post-Combustion Capture
Syaiem e Laipch ] m hineralization & Bio

& aparations

PdEmbrane
System/Subsystam .
Development = EA——

W Absorption

Technology
Oemanstration

Technology
Davelopment

Resaarch to Prove
Feasibility

Basic Technology
Resaarch

7

Technology Readiness Levels
Source: EPRI, 2009

Source: NASA

Copper Oxide Process

Development timelines for
three novel processes for
combined SO, -NO, capture

1996: DOE

1990 | 1995 2000

Electron Beam Process

2002 Process
used i plant in
Beiing. China

2008

2000: Noxso

patent awarded

T
1970 2000 2005

1997 Narso
Corporation
deciares banksuptoy

T T
1070 1975

2008: Papor on process
presented al WEC forum in
Romana
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Invention

ar Model of Technologic~" Change

wjdoption Diffusion

Learning
By Doing

1

Adoption Diffusion
(limited use of improvement &
early designs) widespread use)

Learning
By Using
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Closer coupling and interaction between R&D
performers and technology developers /users

Better methods to identify promising options,
evaluate new processes /concepts, and reduce
number and size of pilot and demonstration
projects (e.g., via improved simulation methods)

New models for organizing the research enterprise

Substantial and sustained support for R&D

* Reminder: The pace and direction of
innovations in carbon capture beyond 2020
will be strongly influenced by climate
policy—which is critical for establishing
markets for CCS technologies
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GtCO,/year Category |

350 - 400 ppm CO,

| 445 - 490 ppm CO, eq.

n =6 Scenarios GtCO,lyear Category Il

| peaking year 2000-2015 90
400 - 440 ppm CO,
75 490 - 535 ppm CO; eq

n = 18 Scenarios
504 peaking year 2000-2020

45

-30
2000 2020 2040 2060 2080

IPCC, 2007

2000 2020 2040 2060 2080

Stabilizing atmospheric concentrations
beyond 2020 may require “negative CO,
emissions” by end of the century

Vehicles ~ Buildings Power
Plants

Emission Sources

DILUTE
'

CO, Concentration (% vol)

«— DIFFUSE | Ambient Air

10 100 1,000 10,000 100,000 1,000,000 10,000,000

CO, Potentially Capturable (tonnes/year per installation)
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* This is an exciting time to be working on carbon
capture—now and beyond 2020

* While the challenges are significant, so too are
the opportunities to greatly lower the costs (and
thus increase the prospects) of avoiding serious
consequences of global climate change

Yes we can!

Thanks

rubin@cmu.edu
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