Nanoscale Ferroelectrics: where size
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Ferroelectrics develop reversible electrical
polarisation when electric field is applied

Polarization
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Important fundamental features which point
to a strong sensitivity to size:

* Ferroelectricity traditionally described as a cooperative effect —
below a ‘critical volume’ ferroelectricity is not thought to be sustained
— expect ferroelectricity to be destabilised as size is reduced,

« Development of polarisation involves, in most cases, physical
distortion of the unit cell — strain and polarisation are therefore
coupled. Surface / interfacial strain and strain clamping has a major
Influence;

« Dipolar nature means that discontinuities / boundaries / surfaces can
be charged — the field between charged surfaces opposes the dipole
formation — depolarising fields increase when surfaces are close
together.



Influence of boundaries |: Strain coupling
AG=zaP’+3BP*— 35, X, X,— 0, X,P*

Inherent importance of strain coupling is undeniable — manifested in bulk
through shape-conserving twins / 90° domains, BUT.....in thin film
geometries, particularly those in which misfit strain between film and
substrate is small and film thicknesses are less than needed to form misfit
dislocations, strain coupling to substrates becomes extremely important.
This recognised in classic phenomenological work by N. A. Pertsev et al.
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A phenomenological thermodynamic theory of ferroelectric thin films epitaxially grown on cubic
substrates is developed using a new form of the thermodynamic potential, which corresponds to the ac-
tual mechanical boundary conditions of the problem. For single-domain BaTiO; and PbTiOs films, the
“misfit-temperature” phase diagrams are constructed. It is found that the 2D clamping of the films. apart
from a shift of the temperature of the ferroelectric transition, results in a change of its order. A change
of the sequence of the phases and the appearance of phases forbidden in the bulk crystals are predicted.
[S0031-9007(98)05421-0]
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Pertsev Phase Diagrams
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FIG. 1. Phase diagrams of (001) single-domain BaTiO; (a)
and PbTiO; (b) thin films epitaxially grown on different
cubic substrates providing various misfit strains u,, in the
heterostructures. The second- and first-order phase transitions
are shown by thin and thick lines. respectively. The quadruple
and triple points at wu, = 0 correspond to the Curie-Weiss
temperatures of these materials in the bulk form.

Pertsev and co-workers suggest new phase diagrams
for epitaxial thin film ferroelectrics that are clamped to
single crystal substrates.

Work progressed by others involved in Landau-
Ginzburg-Devonshire free energy descriptions of
ferroelectrics e.g. Ban and Alpay JAP (2002) / (2003).
Also atomistic simulations contribution to the strain
clamped alterations in phase diagrams (mostly
Vanderbilt and co-workers).
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FIG. 4. Phase diagram of epitaxial BaTiO; obtained using the
effective Hamiltonian of Zhong, Vanderbilt and Rabe (see Ref 19).



Experimental testing of Pertsev ideas

Substrates and thin film electrode systems which induce compressive epitaxial
strain relatively easy to make. Some early reports of strain-coupled
stabilisation of c-phase (consistent with Pertsev) e.g. Sinnamon et al APL
(2002),
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Thickness-induced stabilization of ferroelectricity in
SrRuQ;/Bag 551y 51103/ Au thin film capacitors

L. J. Sinnamon, R. M. Bowman, and J. M. Gregg®
Department of Pure and Applied Physics, Queen’s University Belfast, Belfast BI7 INN, United Kingdom
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Room-temperature ferroelectricity
in strained SrTi0;

J.H
S. Choudhury’, W. Tian”, M. E. Hawley’, B. Craigo’, A. K. Tagantsev’,
X. Q. Pan’, S. K. Streiffer’, L Q. Chen', S. W. Kirchoefer, J. Levy’

& D. G. Schlom’

. Haeni', P. Irvin°, W. Chang’, R. Uecker®, P. Reiche’, Y. L Li’,

Most impressive experimental observation
of compressive strain coupling by Haeni et
al. Nature (2004).

SrTiO, film grown coherently onto DyScO,
— in-plane compression sufficient to not
only raise Curie temperature, but to
change incipient ferroelectric into genuine
ferroelectric.
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Under tensile strain ?

r o ; week endin
PRL 96, 127602 (2006) PHYSICAL REVIEW LETTERS 31 MARCH 2006

Polar Domains in Lead Titanate Films under Tensile Strain
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Thin films of PbTiO;, a classical ferroelectric, have been grown under tensile strain on single-crystal
substrates of DyScO;. The films, of only 5 nm thickness, grow fully coherent with the substrate, as
evidenced by synchrotron x-ray diffraction. A mapping of the reciprocal space reveals intensity
modulations (satellites) due to regularly spaced polar domains in which the polarization appears rotated
away from the substrate normal, characterizing a low-symmetry phase not observed in the bulk material.
This could have important practical implications since these phases are known to be responsible for
ultrahigh piezoelectric responses in complex systems.

DOI: 10.1103/PhysRevLett.96.127602 PACS numbers: 77.55+f, 61.10.—1, 68.55.—a, 77.80.—e

b) ac phase

) Crb / bW Central idea that strain clamping /
strain coupling causes alterations
in phase transition behaviour very
evident in recent work.




Strain coupled transition behaviour in nanoscale
systems with many interfaces — ferroelectric
superlattices

FIRST-PRINCIPLES STUDY OF SYMMETRY LOWERING...

F

> Strain coupling in BTO / STO superlattices
A8 [ aS responsible for development of in-plane
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5 polarisation in STO at room temperature
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FIG. 1. (Color online) Magnitude of Py, in the [110] and [001]
directions. SrT10;, BaT10s5. and interface cells are labeled as S, B,
and I, respectively.



Strain coupled enhanced polarisation In
superlattices

Strong polarization enhancement
in asymmetric three-component
ferroelectric superlattices

Ho Nyung Lee, Hans M. Christen, Matthew F. Chisholm,
Christopher M. Rouleau & Douglas H. Lowndes
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Also watch for work by Dawber and
Triscone on superlattice coupling

effects




Influence of boundaries |l: depolarising fields
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-ve charged surface
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+ve charged surface

Existence of surfaces which
do not offer any charge
compensation create
voltage and field which
opposes the polarisation
responsible for the charge in
the first place. As distances
between surfaces decreases
the charge density on the
faces is largely unchanged —
hence depolarisation field
dramatically increases in
nanoscale objects.



Suspected effects of the depolarising field

* Progressive loss of ferroelectricity (if no domain formation considered)

letters to nature

Critical thickness for ferroelectricity
in perovskite ultrathin films

Javier Juntquera & Philippe Ghosez
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Equivalent modelling with acknowledgement
of surface effects
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FIG. 3. Reduced Curie temperature of a thin film Ba, Sr; _ Ti0; (x=0.5).
Solid line was sumulated by Eq. (22). dotted line was taken from Ref. 23,



What about suppression of ferroelectricity in
experiment ?
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In thin films of PbTiO,, while Tc is progressively suppressed with reduced
thickness — ferroelectricity persists. Above figure (Fong et al. PRL 2006)
relates to compensating surfaces, but similar in non-compensating conditions
with formation of domains holding stability of ferroelectricity (see next
overhead).



Other experimental observations — thin films
and nanowires
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ferroelectricity remains.
Depolarisation field effects negated
by 180° domains




SPM-written ‘bits’ surprisingly stable when very
small indeed in nanowires and thin film media
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FE stability down to ultrananoscale In
Isolated islands Is less clear

Topographic Image In-Plane
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determined. In the PFM images (b} mn-plane and (c) out-of-plane piezore-
sponse the grain of the size of 20 nm is not visible leading to the assumption
they do not have anv permanent polarization.

Islands examined by Roelofs et al. APL
(2002) suggest loss of ferroelectricity
below diameter ~20nm



Strain and depolarisation effects on
ferroelectric domains

-ve charged surface %
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+ve charged surface |

Domains minimise the macroscopic manifestation
of the depolarising field



Shape contraint at surfaces and boundaries
Induces 90° domain formation

Domains can also form in order to accommodate
macroscopic shape constraints — shape
compensating domains




Basic phenomenological physics for domain
periodicities variation with size

Electrostatic energy associated with

free surface Under equilibrium:
oF d
F @ F _o-uy 0
oW W
Total domain WaII energy d

o8 T1[8]1]3] wE=r§

180° domains

Kittel, Phys. Rev. 70, 965 (1946); Zhirnov, Sov. Phys. JETP 35, 822
(1959); Mitsui & Furuichi, Phys. Rev. 90, 193 (1953); Roytburd, Phys.

Status Solidi A 37, 329 (1976).



Study domains imaged by STEM in BaTiO,
slabs of controlled thickness (cut with FIB)

= 90° domains

Region for
selected area
diffraction

{110} domain walls,
Period in this case ~50nm
from both real space and
reciprocal space
measurements




Domain period (nm)

Find Kittel’'s law obeyed across 6 orders of
magnitude

5
10 § Mitsui's data on Rochelle Salt (gradual cooling)
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Schilling et al., PRB (2006) W=kd'"? holds for ferroics across 6 orders
of mag.
Constant of proportionality similar within
each ferroic subgroup.



Ferroelectric columns /
wires / picture frames

Stripe domains;

Domain periodicity response sensitive to
additional size constraint (being thin in
more than one dimension)

(b)
Schilling et al., APL (2006)




Domain period (A) (nm)
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In fact gradient difference is larger than in previous slides — we
measured periodicity parallel to column axis, rather than
perpendicular to domain wall — hence factor root two correction.
Leads to more obvious surface energy differences (unpublished):
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Longitudinal-section (1) perpendicular to x-axis
! showing charge state on surface perpendicular to y-
' axis:

| oL
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Longitudinal-section (2) perpendicular to y-axis
showing charge state on surface perpendicular to x-
axis: A
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Full treatment of Kittel
for 2D constraint

W =
2 U, y
_|_
d, d,
Rewritten:
. (U Uy
W :(Zx/EO') x4
d, d,

This defines a plane for w2 vs d, !
and d,*.

Catalan et al. JPCM (2007)
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Column energy study suggests:

If d,>d, then expect: If d,<d, then expect:
A + L

Smaller
surface area
supports non-
axial
polarisation
out-of-plane




Progression from d,~350nm to ~150nm (d, ~ 200nm)




Alina Schilling sculptures on FIB a series of complex
nanowire samples — STEM montage of one below:
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Domains suggest
Polarisation is out-
of-plane

Domains suggest
Polarisation is in-
plane

Domains suggest
Polarisation is out-
of-plane

Morphological control of polar orientation



Other interesting domain configurations not
completely rationalised

Formation of domain

‘superperiods’ as a further
mechanism for minimising
depolarisation field

Subtle domain periodicity
changes at more complex
domain boundaries



Flux / Field Closure Domains N
in Ferroelectric Nanodots AN

C. Kittel, Rev.

Mod. Phys., 21, ~

541 (1949) ‘x:* )
l b x4

MAGMNETIZED By
DOMAIN GROWTH
(BOUNDARY DISPLACEMENT

MAGNETIZED BY
DOMAIN ROTATION



~5nm
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Ferroic VVortices In Minerals

Fig. 4. (3 and ¢) Chemical maps (blue = Fe, red = TI) from two regions not
shown in Figs. 1 and 3. (b and d) The corresponding magnetic microstructures,
in the same format as Fig. 3. (b) Three adjacent magnetite-rich regions
combining to form a single vortex; (d) a small region that is magnetically
antiparallel to its larger neighbors.

Harrison et al., PNAS, 99, 16556
(2002)
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Vortex core observations in !
Ferromagnets

Shinjo et al. Science,
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N. D. Mermin,
Rev. Mod. Phys.,
51, 591 (1979)
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FIG. 5. (a) and (b). Two planar spin configurations with wind-

ing numbers +1, (c¢) Configuration (b) has been altered to coin-
cide with configuration (a) in the core region near the singular

point, but remains unaltered away from the core region,



More complex morphologies - ferroelectric
solenoids ?

Suggests nanoscale
ferroelectric
solenoid

0 Fulartzation

Im
\Qr

Gorbatsevich & Kopaev, Ferroelectrics, 161, 321 (1994)
and J. F. Scott, Nature Materials, 4, 13 (2005)
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Toroidal Nanoscale Ferroelectrics

FIB patterned
BaTiO, lamell

Secondary electron images
generated by Ga-ion primary beam
on FIB




Domain imaging clearly shows no
evidence of vortices down to ~100nm

Conventional {110} oriented domain walls, with predictable periodicities.
Need to push dimensions down below that achievable with FIB alone or
look at systems in which polar rotation is easier (MPB systems or relaxors
below T)).



Ferroelectric nanorings made by TEM
sectioning PZT-internally coated nanoporous
alumina

Zhu et al., APL
89, 122913
(2006) — rings
made, but not
yet evidence of
vortex domains




Rings using latex sphere templates  Polystryene

Nanosphere deposition Q %O Q
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Removal of spheres
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Aizpurua et al., PRL 90, 574011 Nanorings
(2003)




PZT nanoring arrays

300nm

As yet no evidence of vortex domain formation



Size effects on dynamics of ferroelectrics —
focus on permittivity

Dielectric Constant
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Move from bulk / single crystal to
thin film results in dramatic
collapse in low-field permittivity,
smearing of Curie anomaly, and
apparent migration of Curie ‘peak’
mainly to lower temperatures:

Shaw et al. APL (1999), also
Parker et al. APL (2002)



Reduction in permittivity rationalised by
series capacitance ‘dead layer’
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C. A. Mead, PRL, 6, 545 (1961)
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nature

LETTERS

Origin of the dielectric dead layer in nanoscale

capacitors

Massimiliano Stengel' & Nicola A. Spaldin’

Atomistic simulations with applied
field — novel step.

Conclude intrinsic ‘dead-layer’
due to imperfect nature of
screening from real electrodes.
Smaller screening length — less
apparent ‘dead-layer’ effect.

0.04 — , ; , . | . ,
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[ + —- Frozen SrRuO, I
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Figure 3 | Influence of the ionic contribution to the screening on the
magnitude of the dead layer. Black lines show the inverse permittivity
profiles obtained by freezing the ions in the SrRuQj; electrodes. The fully
relaxed result of Fig. 1 (solid curve) is compared to the frozen-electrode
profiles, respectively allowing (dashed) or not allowing (dot-dashed) the
interfacial SrO(I) layer to relax. The calculated profile for a Pt/SrTiO;
capacitor (shown as a thick red curve) demonstrates the superior properties
that can be achieved by using elemental metals as electrodes.



Origin of the series capacitance ?

Falls into 3 distinct groups:

(1)

(I1)

(1)

Relating to unavoidable physics associated with the
ferroelectric-electrode boundaries (ideas such as Schottky
barrier-induced interfacial capacitance, fundamental polarisation
suppression to allow P=0 at electrode-ferroelectric boundary,
imperfect charge screening in the electrode, fundamental
asymmetry issues);

Processing problems associated with the electrode-ferroelectric
boundary which could be engineered out (such as distinct
interfacial microstructure or chemistry or defects, strain
coupling)

Through-film microstructure — the issues of grain boundaries.



What does experiment tell us about origin of
series capacitance ?

Classical work by Basceri et al. JAP one of the earliest attempts to identify the
electrical characteristics of the series cap component.
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Broadly temperature independent; bias field tends to reduce the influence of
the series capacitance



Work at Queen’s Belfast and
Cambridge

APPLIED PHYSICS LETTERS VOLUME 78, NUMBEER. 12 19 MARCH 2001

Investigation of dead-layer thickness in SrRuQO;/Baj 5Sr, 5TiO;/Au
thin-film capacitors

L. J. Sinnamon, B. M. Bowman, and J. M. liE-regg:]a:I
Department of Pure and Applied Piysics, Quesn's University Belfast, Belfast BI7 INN, Ireland
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Parasitic ~ gyik-like dielectric
‘dead-layers’ “Su———

|dea that as make total ferroelectric layer thinner,
eventually bulk-like component disappears, at which
point series capacitance behaviour should break down
(nothing in series with dead-layer).
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Case (iii)) — no dead-layer



Grain Size / nm

APPLIED PHYSICS LETTERS

WVOLUME 81, NUMBER 4 22 JULY 2002

Exploring grain size as a cause for “dead-layer” effects in thin film

capacitors

L. J. Sinnamon, M. M. Saad, R. M. Bowman, and J. M. Gregg®
Department of Pure and Applied Physics, Oueens University Belfast, Belfast BI' 7 INN, United Kingdom
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Noticed that permittivity fall-off
with film thickness maps very
well to grain size variation with
thickness — coincidence ?

Columnar microstructure suggests
grain boundary layers should act
electrically in parallel, and hence
usually ignored as source of series
capacitance....BUT..



‘Dead-layer’ on grain boundary
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Worries about grain boundaries helped motivate a
study using thin single crystals

APPLIED PHYSICS LETTERS WOLUME 84, NUMBER 7 16 FEBEUARTY 2004

Characteristics of single crystal “thin film” capacitor structures made
using a focused ion beam microscope

M. M. Saad, R. M. Bowman, and J. M. Gregga]
Department of Pure and Applied Physics, Queen’s University Belfast, Belfast BT7 INN, United Kingdom

Normal FIB
process for cutting
lamellae was
altered such that
lamella was an
overhanging ‘lip’ at

\/ the crystal edge




FIB process issues — Ga implant
and damage could cause and
obvious ‘dead-layer’, such that the
single crystal experiments would
be worthless.

Post-FIB thermal anneal seemed
to recover interface quality.
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Relative Permittivity

Loss tangent (tan &)

30,000

Functional Measurements

INsTITUTE OF PHYSICS PUBLISHING JourNAL oF PHysICs: CONDENSED MATTER

J. Phys.: Condens. Matter 16 (2004) L451-1L456 PII: S0953-8084(04)86238-6

LETTER TO THE EDITOR
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Intrinsic dielectric response in ferroelectric
nano-capacitors

M M Saad!, P Baxter!, R M Bowman', J M Gregg', F D Morrison?
and J F Scott?

75nm single crystal lamella of BaTiO,
showed no characteristics of ‘dead-layer’
series capacitance behaviour.

Implication that all causes of interfacial
capacitance are extrinsic and can be
y engineered out.

250

300

350 400 450
Temperature / K

500

550 But.....no experiment is perfect.



Optical Picture and Structure
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Very early data — all of the Ga-implant has not yet

Capacitance (F)

Capacitance V.S. Temeprature as functions of Frequency--no correction
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been annealed out of the structure

T, appears to be
same as bulk; but
peak is rounded —
need to anneal to
remove Ga-implant,
but these experiments
should prove to be
critical
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