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General calibration:
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Several competing contributions:
1. Vertical surface response
2. Longitudinal response
3. Torsional response
4. Local electrostatic force
5. Distributed electrostatic force

Different contributions to signal can be distinguished by frequency-dependent measurements; 
however, this approach is not universal  

Dynamics in PFM



Kalinin and Bonnell, PRB 2001
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NE• Electromechanical response of the surface and local 
electrostatic force operate in tip-surface junction.
• In a realistic system, longitudinal tip displacement and 
distributed electrostatic forces contribute to vertical PFM signal

Vertical: Electrostatics + d33 Longitudinal: d34 Non-local electrostatic

Vertical PFM signal is a sum of 4 contributions dependent on frequency and geometric 
properties of the cantilever, and contact stiffness.

Contributions to Vertical PFM Contrast
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Beam equation:

Boundary conditions:

General solution:

• Superposition of vertical, longitudinal, local electrostatic, and non-local electrostatic terms 
⇒ can be analyzed separately

• Resonances are determined by the elastic properties of material only
⇒ can not be used to separate responses
⇒ AFAM measurements with electric excitation

• Antiresonances can be used to nullify chosen response component

General Solution for Beam Equation
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Resonance structure

•Well studied in the context of AFAM
•Resonances depend only on elastic properties 
of material
•But: for non-planar tip spring constant (and 
resonant frequency) are bias dependent!
•The optimal detection regime depends on 
mode number and ratio of cantilever spring 
constant and spring constant of tip-surface 
junction 

Cantilever geometry

Vertical Sliding

• Depending on the geometric 
parameters of the cantilever, 
response can be vertical and lateral

Frequency behavior

Longitudinal:

Vertical and local 
electrostatic

Non-local

• All components decrease with frequency
• Non-local decays fastest
• Longitudinal – slowest, but there is an onset of 
sliding friction

General Solution for Beam Equation
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• Use of stiff cantilevers
•Positioning the beam and the nodal point for 
flexural mode (B. Huey) 
• Imaging at high frequencies
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Cantilever Buckling Effect



0 1 2 

0 1 2 

0 

1 

2 

-2 

-1 

0 2 4 

0 

1 

2 

-2 

-1 

0 5 10 Frequency, MHz Frequency, MHz

PE

NL LE

Lo
g (

V tip
)

Lo
g (

V tip
)

0 

1 

2 

-2 

-1 

Frequency, MHz

Soft: k = 0.1 N/m Medium: k = 2.4 N/m

Stiff: k = 40 N/m

Soft and shielded

• The relative contributions of the responses do not change near the resonances
• Non-local electrostatics dominate near antiresonances
• Cantilever stiffness and frequency do not affect relative local electrostatic and piezoelectric signal
• Contact stiffness controls resonance frequency 

Cantilever Buckling Effect
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• Electrostatic contribution can strongly affect apparent contrast
• For non-piezoelectrics, yields V-type hysteresis loops
• For switchable ferroelectrics, can be subtracted (since it is conservative)
• For piezoelectrics, difficult to separate 

Electrostatic Effect on Imaging
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• Frequency dependence of nulling potential is a measure of relative electrostatic and 
electromechanical contributions to the signal
• This is also valid for NC-AFM based Kelvin probe

2D Spectroscopy
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• Electrostatic contribution can be unambiguously determined as a function of frequency
• Electromechanical contribution can be determined only if surface potential is known

Separation of Electrostatic and Electromechanical Signals
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PFM Signal in the Low-Frequency Limit:

Electromechanical contribution

Local electrostatic contribution

Non-local electrostatic contribution

Electromechanical imaging requires high contact stiffness

• Vertical PFM is optimal at high (~1 MHz) frequencies
- better S/N ratio 
- cantilever stiffening improves contact
- limited by bandwidth of detector
- at very high frequencies, no signal transduction

• Lateral PFM is optimal at 10 – 100 kHz
- problems with friction

Low Frequency PFM Equation
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Frequency

• Away from the resonance: low signal
• At the resonance: strong cross-talk
• Vicinity of the resonance: optimal

Resonance enhancement in PFM

• Cantilever does not respond
• Photodiode bandwidth

If the frequency is too high:

Optimal Frequency for PFM
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We expect significant variability of resonance frequency as a 
function of topography!

Bound lever

Resonance Enhancement in PFM
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To image weakly piezoelectric materials or high resolution spectroscopy, we need to detect small (1-10 
pm) surface displacements. Can we use resonant enhancement? 

Problem 1: resonant frequency depends on topography, and not on electromechanical response!
Problem 2: Standard PLL frequency-tracking loops are unstable

Frequency
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Solution: fast acquisition of amplitude-frequency curve in the vicinity of resonance

Resonance Enhancement in PFM
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SPM Methods to Date
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The Band Excitation Method



Ti
m

e 
D

om
ai

n
Ti

m
e 

D
om

ai
n

Fr
eq

ue
nc

y 
D

om
ai

n
Fr

eq
ue

nc
y 

D
om

ai
n

t
taSINC )sin( ⋅

= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
=

2
sin

2taCHIRP

To φ or not to φ : The Role of Phase
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•Truncating and repeating 
the waveform reduces the 
frequency resolution but 
increases signal-to-noise

Repeat 8 times

Repeat 16 times

Repeat 32 times

Repeat 64 times

Truncate by 1/8

Truncate by 1/16

Truncate by 1/32

Truncate by 1/64

TIME DOMAIN FREQUENCY DOMAIN

Truncating the Waveform: Frequency Resolution vs Signal-to-Noise



Feedback

Feedback

Feedback

Advanced BE Options

Flexibility to tune excitation and detection windows, sample tails of 
resonance peak, implement fully digital Q-control, etc. 
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Band Excitation in Action

With BE, we collect full response curve at each pixel at standard imaging rate 



TopographyTopography AmplitudeAmplitude

FrequencyFrequency QQ--factorfactor

Atomic Force Acoustic Microscopy

Tobacco mosaic virus (A. Balandin, UCR) 



Force-Distance Spectroscopy

Mica in air



(a) (b)

Phase

Magnetic Force Microscopy

Single Crystal Yttrium-Iron Garnet (sample courtesy of R. Proksch, Asylum Research)



Standard MFM Phase

Magnetic Force Microscopy



Frequency Q

Magnetic Force Microscopy

Unambiguous decoupling of conservative and dissipative interactions



The Band Excitation Method:

•Provides a more comprehensive description of probe-sample interaction 
dynamics for a wide range of SPM techniques 

•Measures response spectra at every point in a scan

•Fast

•Yields quantitative maps of resonance, amplitude as a function of frequency, 
and dissipation



Band Excitation PFM
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Band Excitation PFM



Driving the cantilever electrically, we are able to obtain maps of piezoresponse at the resonance, 
resonant frequency and Q-factor as we move from point to point on a sample. There are differences in 
electromechanical and elastic properties.

Topography
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• Fast (10 ms) acquisition of amplitude-frequency 
curve at each point
• Fitting to extract resonance frequency, amplitude, 
and Q-factor 

Band Excitation PFM



Amplitude based resonance frequency feedback

Dual-Frequency Resonance Tracking PFM



Tooth dentine

Collagen fibril

Topography, piezoresponse, and resonance 
frequency are now decoupled

Dual Frequency Resonance Tracking PFM
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Periodically Poled Lithium Niobate

Band Excitation PFS



Band Excitation PFS

Systematic evolution of resonance frequency and dissipation along 
the hysteresis loop.



Band Excitation SS-PFM

Combination of BE and SS-PFM allows systematic studies of voltage-
dependence mechanics and polarization switching on surfaces

Typical 4D data array size: ~3 GB
Processing time: ~10 hours
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Band Excitation SS-PFM in Ultra High Vacuum

Reproducible changes of contact stiffness during switching



Band Excitation SS-PFM in Ambient Environment

• Drift in contact resonance frequencies
• Training period (response maximizes after several cycles)



Surface Damage in PFM

Sometimes, even critical surface damage does not affect PFM!

Surface topography after 5V 
writing at ~100% humidity 

Surface topography after 10V 
writing at ~100% humidity 

PFM image after 10V writing at 
~100% humidity 



• Carrier-impurity scattering (e.g. Drude theory)
• Magnetoacoustic phonon generation
• Molecular vibrations
• Electron-phonon coupling
• Quasiparticles

Fundamental Physics

All energy transformation processes are associated 
with energy losses above thermodynamically 
necessary:  local dissipation centers

Applications
Apply Bias

Measure 
Current

STM

Apply Force

Measure 
displacement

AFMPFM
KPFM

Dissipation:

In STM: P = IV

In AFM: P = Fd (almost)

In PFM: ?

R. Proksch, Asylum Research

Watts103.38 17* −⋅≈Δ= fTkP B

Detection Limit (thermal vibration):

or ~3 meV/oscillation

Energy Dissipation in SPM


