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Dynamics in PFM

VPFM  {-.. Displacement

Several competing contributions:
1. Vertical surface response

General calibration:

2. Longitudinal response PR e 0 a) 0
3. Torsional response PRi|_|0 b0 Wy Moo +| ac Ve ~Veurt )
4. Local electrostatic force YPRy| |0 ¢ a W3 0

YPR| b 0 0 q

5. Distributed electrostatic force

Different contributions to signal can be distinguished by frequency-dependent measurements;
however, this approach is not universal



Contributions to Vertical PFM Contrast
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* In a realistic system, longitudinal tip displacement and ~ Contact radius, nm
C . : : : Kalinin and Bonnell, PRB 2001
distributed electrostatic forces contribute to vertical PFM signal
Vertical: Electrostatics + d; Longitudinal: d, Non-local electrostatic
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Vertical PFM signal is a sum of 4 contributions dependent on frequency and geometric
properties of the cantilever, and contact stiffness.



General Solution for Beam Equation

2 Beam equation:
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Boundary conditions:
Elu; (L) = k,H(d, —uj(L)H)

Elug(l—): —fo+ kl(UO(L)_dl)

General solution:

A (B)d, + A(B)d, + A (B)f, + A (B,

etot =
N(B)

« Superposition of vertical, longitudinal, local electrostatic, and non-local electrostatic terms
= can be analyzed separately

 Resonances are determined by the elastic properties of material only
—> can not be used to separate responses
= AFAM measurements with electric excitation

* Antiresonances can be used to nullify chosen response component



General Solution for Beam Equation

Resonance structure
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*Well studied in the context of AFAM
*Resonances depend only on elastic properties
of material
*But: for non-planar tip spring constant (and
resonant frequency) are bias dependent!
*The optimal detection regime depends on
mode number and ratio of cantilever spring

constant and spring constant of tip-surface
junction

Cantilever geometry
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Vertical Sliding
A(B)  ekLd » Depending on the geometric
N(B) parameters of the cantilever,

response can be vertical and lateral

Frequency behavior

i+ dinal A(B) 1
Longitudinal: NG) o
Vertical and local AB) _AB) _k
electrostatic N(B) N(B) o
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Non-local N(B) "

« All components decrease with frequency

* Non-local decays fastest

« Longitudinal — slowest, but there is an onset of
sliding friction



Cantilever Buckling Effect

Soft: k=0.1 N/m Medium: k = 2.4 N/m

PFM signal: Zlw = Z((a)ff +d33V4e
Effective Zor =—LWegV, AV /48K H?
deflection:

Which cantilever is stiff enough:

d33Vye >> Zgﬁ = k. >k’ =M
y e 48d . H?
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Frequency, MHz Frequency, MHz * Use of stiff cantilevers

*Positioning the beam and the nodal point for
flexural mode (B. Huey)
* Imaging at high frequencies



Cantilever Buckling Effect

Soft: k =0.1 N/m Medium: k = 2.4 N/m Soft and shielded
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* The relative contributions of the responses do not change near the resonances

» Non-local electrostatics dominate near antiresonances

» Cantilever stiffness and frequency do not affect relative local electrostatic and piezoelectric signal
« Contact stiffness controls resonance frequency



Electrostatic Effect on Imaging
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» Electrostatic contribution can strongly affect apparent contrast
* For non-piezoelectrics, yields V-type hysteresis loops

* For switchable ferroelectrics, can be subtracted (since it is conservative)
* For piezoelectrics, difficult to separate



2D Spectroscopy
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* Frequency dependence of nulling potential is a measure of relative electrostatic and
electromechanical contributions to the signal
* This is also valid for NC-AFM based Kelvin probe



Separation of Electrostatic and Electromechanical Signals
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« Electrostatic contribution can be unambiguously determined as a function of frequency
* Electromechanical contribution can be determined only if surface potential is known



Low Frequency PFM Equation
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PFM Signal in the Low-Frequency L
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Non-local electrostatic contribution

Local electrostatic contribution

Electromechanical contribution

high contact stiffness

imaging requires

Electromechanical

« Vertical PFM is optimal at high (~1 MHz) frequencies

- better S/N ratio
- cantilever st

Improves contact

ing

ffen

dth of detector

h frequenc

- limited by bandw

ignal transducti

no signa

-atvery h

« Lateral PFM is optima

1on

[SN)

g

100 kHz

| at 10 —

- problems with friction



PFM Reponse (a.u.)
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Resonance enhancement in PFM
* Away from the resonance: low signal
* At the resonance: strong cross-talk
* Vicinity of the resonance: optimal

If the frequency is too high:

» Cantilever does not respond
» Photodiode bandwidth



Resonance Enhancement in PFM

Free lever Bound lever
c k, ~ contact area
S k,(111) > k(1) > ky (1)
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We expect significant variability of resonance frequency as a
function of topography!



Resonance Enhancement in PFM

To image weakly piezoelectric materials or high resolution spectroscopy, we need to detect small (1-10
pm) surface displacements. Can we use resonant enhancement?

a

k, ~ contact area
ky(111) > Ky (1) > Ky (1)

Amplitude

Frequency

Problem 1: resonant frequency depends on topography, and not on electromechanical response!
Problem 2: Standard PLL frequency-tracking loops are unstable
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Phase
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Solution: fast acquisition of amplitude-frequency curve in the vicinity of resonance



SPM Methods to Date
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The Band Excitation Method

Time Domain Frequency Domain
—\®,

Response
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and Phase
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Time Domain

Frequency Domain

To @ or notto @: The Role of Phase
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or not to @: The Role of Phase

sin(a-1) s P
SINC = = sin
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Time Domain
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Truncating the Waveform: Frequency Resolution vs Signal-to-Noise
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07
05| Truncate by 1/8
05|
04|
02|
041
0.
' 500 1000 1500

o Truncate by 1/16

02}
0.1
]

500 1000 1500

.». Truncate by 1/32
5!
04!
03!
02|
01|
ol

' 500 1000 1500

o+ Truncate by 1/64
o3

500 1000 1500

Repeat 8 times

2500 3000 3500 4000

Repeat 16 times |

2500 3000 3500 4000

Repeét 32 times

2500 3000 3500 4000

Repeat 64 times

2500 3000 3500 4000

FREQUENCY DOMAIN

- = 8 4 B8 B

" W‘I"ﬁiﬁ”"‘“"ﬁtﬁmﬁ*and repeating

the waveform reduces the
frequency resolution but
increases signal-to-noise

\ |




Advanced BE Options

‘ Feedback
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Flexibility to tune excitation and detection windows, sample tails of
resonance peak, implement fully digital Q-control, etc.




Band Excitation in Action
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With BE, we collect full response curve at each pixel at standard imaging rate



Atomic Force Acoustic Microscopy
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Tobacco mosaic virus (A. Balandin, UCR)



Force-Distance Spectroscopy
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Magnetic Force Microscopy

Single Crystal Yttrium-lron Garnet (sample courtesy of R. Proksch, Asylum Research)



Magnetic Force Microscopy
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Magnetic Force Microscopy
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Unambiguous decoupling of conservative and dissipative interactions




The Band Excitation Method:

*Provides a more comprehensive description of probe-sample interaction
dynamics for a wide range of SPM techniques

*Measures response spectra at every point in a scan

oFast

*Yields quantitative maps of resonance, amplitude as a function of frequency,
and dissipation




Band Excitation PFM
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Band Excitation PFM
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Band Excitation PFM
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Driving the cantilever electrically, we are able to obtain maps of piezoresponse at the resonance,
resonant frequency and Q-factor as we move from point to point on a sample. There are differences in
electromechanical and elastic properties.




Dual-Frequency Resonance Tracking PFM

Cantilever Deflection

Cantilever Potential
3 f
ref 1
"t"'hq}:
¥ Lockin 1 jr——
A
1]
fy
ref 2
"f"-;-.-{P;
e Lockin 2

=

f, f Frequency

Amplitude based resonance frequency feedback



Dual Frequency Resonance Tracking PFM

Tooth dentine

Collagen fibril
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Topography, piezoresponse, and resonance
frequency are now decoupled

-10°




Dual Frequency Resonance Tracking PFM

Frequency

PFM Amplitude

Phase

Sometimes, we observe resonance frequency dependence on
polarization even for flat surfaces!



Band Excitation PFS
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Periodically Poled Lithium Niobate




Band Excitation PFS
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Band Excitation SS-PFM

. Switching Waveform Evolution of Cantilever Resonance During Switching
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Typical 4D data array size: ~3 GB
Processing time: ~10 hours

Combination of BE and SS-PFM allows systematic studies of voltage-
dependence mechanics and polarization switching on surfaces



Band Excitation SS-PFM in Ultra High Vacuum
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Reproducible changes of contact stiffness during switching



Band Excitation SS-PFM in Ambient Environment
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* Drift in contact resonance frequencies
* Training period (response maximizes after several cycles)



Surface Damage in PFM

Surface topography after 5V
writing at ~100% humidity

Surface topography after 10V
writing at ~100% humidity e o3 T
PFM image after 10V writing at
~100% humidity

Sometimes, even critical surface damage does not affect PFM!



Energy Dissipation in SPM

Applications
All energy transformation processes are associated
with  energy losses above thermodynamically
necessary: local dissipation centers ( STM> @ @

\/
: easure easure

Fundamental Physics
o Carrier-impurity scattering (e.g. Drude theory)
 Magnetoacoustic phonon generation
» Molecular vibrations

. 10

* Electron-phonon coupling
* Quasiparticles
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Cantilever Amplitude (rms meters)
R. Proksch, Asylum Research



