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Overview
 Introduction to and motivation for utilizing synchrotron

x-rays

 Size effects on the ferroelectric phase transition in
PbTiO3 and relationship to 180° domain structure

 Surface interactions with the gas phase and
relationship to polarization state

A good general reference:
Elements of Modern X-Ray Physics, Jens Als-Nielsen and Des McMorrow

(Wiley and Sons, 2001)
Also see: www.aps.anl.gov

www.lightsources.org
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What Can We Do Better For Studies of
Ferroelectric Films?

 Films are microstructurally complex
– X-ray scattering is a measure of the Fourier transform of the structure

being probed
– Don’t just measure the “average” structure as represented by the Bragg

peaks

 Films are not random crystals
– Measure the three-dimensional structure using multiple angles to position

the sample relative to the x-ray beam, with an x-ray beam that is
sufficiently non-divergent and monochromatic, and of a suitable
energy/wavelength to see all the details

 Films are grown and manipulated in complex environments
– Utilize an x-ray probe that is sufficiently brilliant to penetrate such

environments
– If at all possible, do measurements in real time!
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Doing Better: Real Films of Finite Thickness
Thickness fringe period:
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The Goal: Seeing Dynamic Structure in Real Time
 Reciprocal space

– Substrate Bragg peaks

– Film Bragg peaks

– Crystal truncation rods (CTR) and
finite size oscillations
• Truncation of crystal at surface

causes streaks of intensity
extending out of Bragg peaks,
perpendicular to the surface

• Tilt of rods show miscut

– Surface reconstruction Bragg peaks

– Diffuse scattering from defects
• Islands
• Planar defects
• Structural modulations

X-Ray Surface Scattering

H
K

L
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Why Use a Synchrotron X-Ray Source?

 High brightness: synchrotron light is extremely intense and
highly collimated. 

 Wide energy spectrum: synchrotron light is emitted with energies
ranging from the infrared to hard, energetic (short wavelength) x-
rays. 

 Tunable: through sophisticated monochromators and insertion
devices it is possible to obtain an intense beam of any selected
wavelength. 

 Highly polarized: the synchrotron emits highly polarized
radiation, which can be linear, circular or elliptical. 

 Emitted in very short pulses: pulses emitted are typically less
than a nano-second (a billionth of a second).
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Why Use A Synchrotron X-Ray Source?
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What is a Synchrotron?

 Electrons (or positrons) are
accelerated to almost the speed of
light by a linear accelerator (linac) and
booster ring. They are then transferred
to an outer storage ring.

 The electrons are confined to the
“circular” orbit by a series of bending
magnets separated by straight
sections.

Acceleration of a charged particle causes it
to give off energy as photons
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What is a Synchrotron?
 As the electrons are deflected through

the magnetic field created by the
bending magnets, they give off
electromagnetic radiation, so that at
each bending magnet a beam of
synchrotron light is produced.

 Electrons passing through “insertion
devices” in the straight sections of the
ring give off an extremely intense beam
of light

 Energy is added back to the electron
beam using rf cavities

Bending Magnet:  Deflection of the electron path yields
a fan of radiation with a broad energy spectrum

Undualtor: Radiation from each undulation
interferes constructively, yielding a narrow

energy spectrum with high brilliance

Wiggler: Intensities add with
the number of wiggles
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The Advanced Photon Source
at Argonne National Laboratory

 7 GeV storage ring completed in 1995
 Construction cost: $467 million
 Number of APS operations staff: ~450
 Outer diameter of the APS experiment hall: 390 meters (1,225 feet)
 Height of the Sears Tower in Chicago: 436 meters (1,454 feet)
 Total gross floor space of all APS buildings: 86,310 square meters (959,000 square feet)
 Annual operating budget ~$100M/year     or    ~$1000/hr per station
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How X-Rays are Produced
 Electrons injected into the

1104-m circumference
storage ring orbit the ring
more than 271,000 times per
second.

 The beam of electrons is
steered and focused by 1097
powerful electromagnets as it
travels within a closed system
of 240 aluminum alloy
vacuum chambers.

 The beam decelerates at a
rate of about 6 MeV per turn
as it emits synchrotron
radiation. This energy loss is
replaced by the 352-MHz
storage ring rf systems
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Advanced Photon Source Undulator A
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Typical Storage Ring Sector
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Undulator Insertion Devices
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Experimental Stations: APS Beamline 12-ID

Source size: 50µm (vertical) x 300µm (horzontal)

Beamline optics: Pink-beam Pt-mirror at 4mrad (A-station)
           Constant offset double-crystal Si(111) monochromater (A-station)

Focusing Pt-mirror (C-station)
Defining slits: 10µm vertical x 2mm horizontal (D-station)

Incident beam: 2x1011 photons/sec @ 28.3 keV
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A-station

Monochromators for Wavelength Selection

Monochromator used to select 
x-ray energy
In vacuum and LN2 cooled
Important to align monochromator (angle) and undulator (gap) energy
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 Spectrometer must:
– Provide many degrees of freedom for

motion
– Support the weight of the processing

chamber
– Provide open paths for incident and exit

beams and for detectors, and for necessary
connections to the chamber

 Motional degrees of freedom
– Position and orient sample with respect to

the x-ray beam (beam is asymmetric!)
– Control many angles (more than the 

3 Eulerian angles)
• Scattering conditions are

underconstrained
• Allows additional constraints to be

imposed that facilitate different types of
measurements!

– Fixed incidence angle
– Fixed exit angle
– Incidence angle = exit angle
– Fixed azimuth

Panalytical 4-Circle Spectrometer
http://www.panalytical.com/index.cfm?pid=321

Panalytical 2-Circle Spectrometer
http://www.panalytical.com/index.cfm?pid=323

Huber 6-Circle Diffractometer 
at ESRF Beamline 32ID

http://www.esrf.eu/UsersAndScience/Experiments/
SurfaceScience/ID32/Beamline/diffractometer

Supporting and Manipulating
the Sample and Processing Chamber
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Types of Synchrotron X-Ray Methods
 Scattering and Diffraction

– Very high resolution
– Penetration into sample can be tuned by the incidence angle
– Tunable wavelength: anomalous scattering - element specific
– High energy - penetrating
– Dynamical scattering
– Small-angle scattering
– Inelastic scattering, magnetic scattering

 Spectroscopy
– Penetration into sample can be tuned by the incidence angle
– Fluorescence
– X-ray absorption fine structure

 Microscopy
 Time-Resolved Measurements
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Crystal Truncation Rods (CTRs)

 Truncation of crystal at surface causes streaks of intensity to
extend away from Bragg peaks, perpendicular to the surface
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Measuring as much as you can in reciprocal space
(oversample) to solve the real space structure

H
K

L
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How do you solve the phase problem?

 COBRA (Yacoby et al., J. Phys.: Condens. Matter 12, 3929 (2000) and PRB 66, 205311
(2002).

 Fienup algorithm (I. K. Robinson, D. K. Saldin, et al.)

❖ Electron density (ρel) found by iterating between
real and reciprocal space

FT

Constrain FT quantities to
experimental amplitudes

FT-1

Force ρel to be real, positive
definite, and zero outside

crystal

Real space Reciprocal space
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Real space structure for PbTiO3/SrTiO3(001)

 Fong et al. PRB 71, 144112 (2005).
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Total External Reflection

S.K. Sinha, Introduction to Neutron and X-Ray Scattering Lecture Notes
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Reflectivity and Penetration Depth
About the Critical Angle αc

Calculation for PbTiO3, 24keV x-rays,
using http://www-cxro.lbl.gov/optical_constants/mirror2.html
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S.K. Sinha, Introduction to Neutron and X-Ray Scattering Lecture Notes
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Measuring Surface Structure

 PbO pressure controlled by changing
precursor flows

– PbO terminated surface (c(2x2)
reconstruction)

A. Munkholm et al., PRL, 88, 016101 (2001)

PbO-terminated surface has an antiferrodistortive
structure, obtained by 10° oxygen octahedral rotations.

Does surface termination affect compensation and ferroelectric phase stability?

c(2x2)
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Why Build an X-ray Microscope?
 X-rays are penetrating and not charged!

MEMS devices
10-100 µm wide

Iron atom quantum corral
14 nm wide

ATP synthase
about 10 nm wide

Atoms of silicon
spacing 0.078 nm

www.science.doe.gov/bes/
scale_of_things.html



Seeing is believing….
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Microscopy: Focusing Mirrors

•A bent flat mirror is used to give to focusing (for instance in the vertical direction).
•The term cylindrical mirror is traditionally used to refer to a mirror not bent, but rather
concave-figured in the other direction to focus the beam horizontally.

•Bending a cylindrical mirror along the long axis produces a toroidal mirror that focuses in
both directions.

•The special case where you have two flat mirrors, one reflecting vertically, the next
reflecting horizontally and both independently bendable is called a Kirkpatrick–Baez pair.
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Probing local structure with lenses
 The above dealt with ensemble averages of thin films or nanoparticles on a substrate

–  x-ray beam is focused vertically but wide (~ 2mm) horizontally (larger than
coherence length)

– averages the scattering unit (ex., the average unit cell in the horizontal
dimension)

 What if you don’t want the average information but local information (e.g., microscope)?
– Fresnel zone plate

- but this requires 1 mm / 10 µm aspect ratio

- OD ~ 100 µm
- now can resolve to ~ 30 nm
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Domains

 Domains are different orientations of the ferroelectric phase with
respect to the higher symmetry prototype phase

 Domains separated by domain walls
 Domains may be ferroelectric/ferroelastic (polarization and

shape change across domain wall) or purely ferroelectric
(polarization change only)

180° Ferroelectric
 Domain Wall

90° Ferroelastic/Ferroelectric
 Domain Wall
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Calculating Intensities

 Friedel’s Law: Bragg reflections related by inversion through the origin have
equal amplitude and opposite phase.

 However, Friedel's Law is broken by anomalous scattering, i.e. when the
imaginary part of ƒ is non-negligible.
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Imaging Polarization Using X-Rays

Do, Evans, et al., Nature Materials 3, 365 (2004)
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CNM & APS Partnership at Sector 26-ID
The Hard X-Ray Nanoprobe

Jointly staffed and managed by CNM & APS

Smallest visible
structures

are ~30nm

•Unique instrument to study
individual nanostructures

•Quantitative structure, strain,
orientation imaging

•Sensitive trace element and
chemical state analysis

•Ability to penetrate overlayers,
environments, fields

•30 nanometer spatial resolution
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The World’s Premier Hard X-ray Nanoprobe: 30 nm and Beyond

Xradia Zone
Plate and
instrument

(CNM/APS)
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Background:  Ferroelectricity
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Ferroelectric Transition
PbTiO3-Based System

 The strain  can be linked to the polarization through LGD phenomenological theory

strain

E
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D C

For c-oriented  monodomain
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O
Ti

Above Tc: paraelectric Below Tc: ferroelectric
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Time-Resolved Synchrotron X-Ray Scattering

 Data taken on 250 nm PMN-PT film (PT≈30-35%)
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Storage Ring Filling

 X-rays generated by electron bunches circulating around ring with 3.68µs period
 Bunch width is about 100ps
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Time Resolved, Stroboscopic Methods

 At each voltage, collect all 2θ
 Utilizes rocking curve of sample to “scan” θ
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Chopper
 Ability to select individual ~ 100 picosecond pulses from the

storage ring fill pattern (during special asymmetric fill modes)
for time-resolved studies

DC servomotor

Air bearing assembly

Optical encoder

Vacuum housing

Interchangeable
chopper discs
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PMN7-PT3 Response to a Step Voltage

 ΔP ~ 80µC/cm2; agrees well with 100kHz hysteresis loop
 RC time constant of circuit ~ 15ns, given current device size

+9V

-11V
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Measuring Domain Wall Velocity
 Grigoriev, et al., Phys. Rev. Lett. 96,187601 (2006)
 APS Sector 7, 10keV, 115nm spot
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Overview

 Introduction to and motivation for utilizing synchrotron
x-rays

 Size effects on the ferroelectric phase transition in
PbTiO3 and relationship to 180° domain structure

 Surface interactions with the gas phase and
relationship to polarization state
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Ferroelectric Physics: The Ferroelectric Size Effect
 Ultimately interested in 3D structures
 Problems:

– Difficult to change size without changing
other parameters

• Domain structure
• Stress
• Chemistry, defect content

– Two correlations to consider
• Longitudinal
• Transverse

– Hard to characterize
• Surface structure
• Particle shape
• Size distribution

 Use coherent epitaxial ultrathin films as a
model system with precise control of:
– stress/strain
– chemistry
– electrical boundary conditions

Ishikawa, et al., JJAP 35, 5196 (1996):
PbTiO3 Dcrit = 10.7nm

Tybell et al. [Appl. Phys. Lett. 75, 856 (1999)]
observed stable ferroelectricity in 10 unit cells thick
(4 nm) Pb(Zr0.2Ti0.8)O3 films on SrTiO3
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Spontaneous Strain, Epitaxial Strain

 Take reference frame for describing the phase transition as the
fictitious cubic lattice parameter

 Spontaneous strains occur at zero stress through strain-
polarization coupling

Epi strain

Spontaneous
strain
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Model System: Epitaxial Pb(ZrxTi1-x)O3 on SrTiO3

Phase boundaries calculated from I. Barin, Thermochemical Data of Pure Substances,
3rd Edn., VCH, New York, 1995

After C.D. Theis, at al., Thin Solid Films 325, 107 (1998)

✦ Large polarization, spontaneous strains and atomic displacements
✦ Easy to explore interaction between interfaces & spontaneous polarization.

Growth using:

Tetraethyl Lead (TEL)

Titanium Isopropoxide (TIP)
Titanium tert-Butoxide (TTB)

Zirconium tert-Butoxide (ZTB)

10 Torr chamber pressure

600-800 °C growth temperature
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Scattering Detector

G.B. Stephenson, et al., MRS Bull. 24 (1) 21 (1999)
M.V.R. Murty, et al., Appl. Phys. Lett. 80, 1809 (2002)
G.B. Stephenson, et al., Physica B 336, 81-89 (2003)

Beamline 12ID-D 
Advanced Photon Source
Argonne National Laboratory

Grazing incidence geometry (28.3 keV)

 Grow epitaxial PbTiO3 films on
SrTiO3 or SrRuO3/ SrTiO3
substrates by metalorganic
chemical vapor deposition
(MOCVD) at ~700°C

 Chamber Pressure: 10 Torr
(usually kept at 2.3 Torr O2)

 In-situ growth allows precise
control of film thickness to sub-
unit-cell accuracy

– We study films 1-100 unit
cells (0.4 - 40 nm) in
thickness

– Films have crystalline
quality equivalent to
substrate (ω~ 0.005°)

 Study structure at various T as
we cool to room temperature

Experimental Approach
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G.B. Stephenson, et al., MRS Bull. 24 (1) 21 (1999)
M.V.R. Murty, et al., Appl. Phys. Lett. 80, 1809 (2002)
G.B. Stephenson, et al., Physica B 336, 81-89 (2003)

 Grow epitaxial PbTiO3 films on
SrTiO3 or SrRuO3/ SrTiO3
substrates by metalorganic
chemical vapor deposition
(MOCVD) at ~700°C

 Chamber Pressure: 10 Torr
(usually kept at 2.3 Torr O2)

 In-situ growth allows precise
control of film thickness to sub-
unit-cell accuracy

– We study films 1-100 unit
cells (0.4 - 40 nm) in
thickness

– Films have crystalline
quality equivalent to
substrate (ω~ 0.005°)

 Study structure at various T as
we cool to room temperature

Experimental Approach
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Intrinsic Surface Effect

Adapted from Kretschmer & Binder, Phys. Rev. B 20, 1065 (1979).

 Polarization near surface
can differ due to surface
properties
– Surface energy

 Can explain suppression
of TC if surface “prefers”
lower polarization

P

z

surface

gradient

P∞

Psurf

−δextrapolation length
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The Depolarizing Field Effect

– J. Junquera, P. Ghosez, Nature 422, 506 (2003)
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Stability of the Ferroelectric Phase

 Depolarizing field ED is the electric field arising
from polarization

 ED can be partially compensated by:

– Domain formation
• Equilibrium stripe domain period determined

by trade-off between field and domain wall
energies

– Free charge at surface/interface from
• Conducting or semiconducting electrodes
• Charged surface adsorbates

 Given residual depolarization, ferroelectricity is
maintained to surprisingly small thicknesses in
ultrathin PbTiO3

If the depolarizing field is uncompensated,
the ferroelectric phase transition in PbTiO3 is destroyed
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Phase Transitions in PbTiO3

 Thin films can be grown that are fully lattice matched (unrelaxed)
 Paraelectric-to-ferroelectric phase transition Tc predicted to depend on epitaxial strain

– 260°C enhancement predicted in Tc for PbTiO3 on SrTiO3

Tc(zero stress) = 492°C

Tc = 752°C

Strain 
PbTiO3 on SrTiO3 substrate

after N. A. Pertsev and V. G. Koukhar PRL 84, 3722 (2000).
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Background:  Ferroelectricity

2/1

1211121211

0

)/(2 !!
"

#
$$
%

&

+'

'
=

ssQsQ

xx
P

Ferroelectric Transition
PbTiO3-Based System

 The strain  can be linked to the polarization through LGD phenomenological theory
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E

EF

D C

For c-oriented  monodomain

PPb

O
Ti

Above Tc: paraelectric Below Tc: ferroelectric

a a

a

a a

c

492°C



5656

Reciprocal Space

56

H
K

L

L

In
te

ns
ity PbTiO3

SrTiO3

PbTiO3

SrTiO3
K

In
te

ns
ity PbTiO3



5757

Determination of Tc from Lattice Parameter
 Ferroelectric phase transition identified by measuring lattice parameter of

PbTiO3 as function of temperature
 Phase transition is continuous
 Tc suppressed below E=0 LGD theory

PbTiO3

SrTiO3
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PTO/STO:  Ordered 180° stripe domains

 Domain formation minimizes energy of
depolarizing field that arises from growth
on an insulator (SrTiO3)

stripe period
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PTO/STO:  Satellites → 180° stripe domains

S.K. Streiffer et al., PRL 89, 067601 (2002)

H

K

In-plane map
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Diffuse Scatter Originates from 180° Stripe Domains
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Ex situ AFM 
(C. Thompson, submitted to APL)

61

Diffuse Scatter Originates from 180° Stripe Domains
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TC in Ultrathin Films

Satellite appearance is a
more sensitive measure

of TC than lattice
parameter measurements
- useful for ultrathin films

Fong et al. Science 304, 1650 (2004)

2 nm thick PbTiO3 film, 303 peaks
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Landau Theory Analysis of Depolarization Effects

 Non-linear Landau-Ginzburg-Devonshire
theory solved using phase field approach
(collaboration with Ken Elder, Oakland
Univ.)

 Single free parameter (domain wall
energy) gives agreement with periods of
both “phases”, assuming Fα has two
uncompensated boundaries and Fβ has a
compensated top surface

 Get agreement with observed TC
suppression for thicknesses larger than 10
nm

 Ultrathin films have a higher TC than
predicted, indicating that intrinsic surface
effect enhances polarization

G.B. Stephenson and K.R. Elder, J. Appl. Phys. 100, 067601 (2006)
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Overview

 Introduction to and motivation for utilizing synchrotron
x-rays

 Size effects on the ferroelectric phase transition in
PbTiO3 and relationship to 180° domain structure

 Surface Chemistry: Surface interactions with the
gas phase and relationship to polarization state
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c

a

SrTiO3

PbTiO3

 PbTiO3-on-SrTiO3 misfit strain ≈ -1% at growth temperature
 Films remain coherently strained up to thicknesses of 40 nm
 This favors polarization axis (c) normal to the film surface

Model Systems: Coherently Strained PbTiO3

Pb

O

Sr

Ru

Ti

SrTiO3

PbTiO3

SrRuO3
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Boundary Conditions - Conducting Substrate
 Deposit on SrRuO3/SrTiO3 provided by Eom group

PbTiO3

SrTiO3 (001)

SrRuO3

reactive atmosphere

PbTiO3

reactive atmosphere

SrTiO3 (001)

No stripe phase, instead
monodomain films with larger

polarization than films with
180° stripe domains form.



6767

Boundary Conditions - Conducting Substrate
 Deposit on SrRuO3/SrTiO3 provided by Eom group

PbTiO3

SrTiO3 (001)

SrRuO3

reactive atmosphere

PbTiO3

reactive atmosphere

SrTiO3 (001)
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D.D. Fong et al., Phys. Rev. Lett. 96, 127601 (2006)

 Piezoresponse AFM confirms that films on
conductive substrates are monodomain,
polarized “up”

 For monodomain ferroelectric phase, charge
compensation must occur at both interfaces

 DFT calculations show that 3-unit-cell-thick
films of PbTiO3 on SrRuO3 are non-polar when
no adsorbates are present. Adsorption of H or
O ions stabilizes polarizations of opposite sign
(collaboration with A.M. Rappe et al., Univ.
Pennsylvania)

PbTiO3 Films on Conductive SrRuO3

For films grown on conductive SrRuO3 layers, we
see a direct transition to the monodomain state
with higher TC than for films on SrTiO3
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“Chemical Switching” of a Ferroelectric Film

?

 Can we switch the polarization by changing the
chemistry of the environment?

 Conversely, how does the sign of polarization affect
surface chemistry?

D.D. Fong et al., Phys. Rev. Lett. 96, 127601 (2006)
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ConclusionsConclusions
 In situ hard x-ray techniques are extremely powerful for probing torr-level

deposition and controlled environment systems.

 In situ methods have allowed us to develop for the first time truly
quantitative control of synthesis of a complex oxide film.

 This quantitative control has allowed deep insight into the physics of the
ferroelectric phase transition.

 Different environments have the potential to interact differently with the
perovskite surface.
– The nature of interfacial charge that compensates the depolarizing field

determines the polarization structure of ultrathin ferroelectric films
• Equilibrium 180º stripe domains are observed in films on insulating

substrates with an uncompensated interface
• Monodomain polarization is observed in films on conductive substrates
• Direction of polarization can be chemically switched by changing pO2 of

environment

 The game is in tuning between competing interactions and interactions.




