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Dispersion Equation 
Retain non-linearity only as shift of betatron frequencies with amplitudes =>   
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    cQΔ    - coherent tune shift related to impedance,  xQF cΔ−∝  
    SCic QQ Δ≡Δ  - incoherent tune shift related to the space charge, ( )xxQF ic −Δ−∝  
Integrating over particle distribution one obtains dispersion equation† 
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( )pp ˆ1)( 0 η−Ω=Ω  - dependence of revolution frequency on momentum  

( )[ ]),(ˆ),,( 000 yxlatyxb aaQpQQaa Δ+−+Ω=Ω ηξω  - dependence of betatron frequency on 
particle betatron amplitudes and momentum (lattice only) 

                       
† D. Möhl, “On Landau damping of dipole modes by non-linear space charge and octupoles”, CERN/PS 95-08, 1995 
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Dispersion Equation (2) 
For iicc QQQ <<ΔΔ ,  expending to the first order in vicinity of unperturbed 
frequency 00 )( Ω+= Qnnω  ( nn δωωω += ) one finally obtains: 
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Additional notes 

 0i+  - determines the rule to cross the pole for solution ( )( )θωδθδ ntiftf −−∝ exp),(  
 Derivative over xa  appears due to tune change with horizontal amplitude‡. For the 

kernel which does not depend on xa  integration by parts results in   

( )
( )( )

0
0

1
0

00
0

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ

−
Ω

−Δ+Δ+
Δ

+−

Δ−Δ
+≡ ∫ p

pddadaaaf
iQQ

p
pnQ

QQ
yxyx

n
iclat

icc
nn δωηξ

δωε  

 For zero lattice tune spread ( ( ) 00 =+− ηξ nQ , 0),( =Δ yxlat aaQ ) and )(),,( ωω cyxc QaaQ Δ=Δ  
one obtains ( ))( 00 QnQc +Δ=Ωδω , i.e. the beam space charge is invisible 

                       
‡ Hereward, “Landau damping by nonlinearity”, CERN internal report MPS/DL 69-11, 1969 

   Lattice 
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Linear Space Charge Model 
 Assume: 

♦  KV-distribution => linear space charge field: icyxic QaaQ =Δ ),(  
♦ Zero lattice non-linearity: 0),( =Δ yxlat aaQ  
♦ No wake dependence on amplitudes: ( ) cnnyxc QaaQ Δ=Δ ω,,  

 Denote 
♦ ( )ηξξ nQn +−= 0  

 Integration over xa  and ya  results in the dispersion equation: 
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 For Gaussian distribution that yields: 
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Linear Space Charge Model (2) 
 Introduce the following function  
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 One obtains for Gaussian distribution  
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 The stability boundary is  

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ−Ω
+

Δ
=

Δ

ν

νν

σ
δωσσ icn

G

iccn

Qf

QQ

0/
1

 

♦ In the linear space charge model the 
space charge does not change the shape 
of stability boundary. It just shifts it  
by icQΔ . 
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Linear Space Charge Model (3) 

 
 Simple estimates resulting from the stability boundary calculations  

♦ Tune shift of coherent motion weakly affected by space charge and is close to 

the real part of coherent shift  ( )cn
n QΔ≈

Ω
Re

0

δω
 

♦ Landau damping: At maximum  - ,/20 νσπλ ≈Ω  
In the tails - ( ) ( )( ) icn QΔ−=−≈Ω 0

22
0 /~,2//~exp/~2/ ωδωνσνσνσπλ ννν  

• Damping is not exactly proportional to particle density at coher. frequency 
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Space Charge Tune Spread for Gaussian beam 
 Beam electric field is 
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where ax and ay are dimensionless amplitudes of betatron motion:  
xxxax μσ cos= , yyyay μσ cos= . 
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ax

ay

Space Charge Tune Spread for  
Round Gaussian beam  

 For round beam and smooth focusing  
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♦ The following expression fits tune  
shift within few percent 
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charge tune shifts only 
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Effect of Space Charge on Landau Damping 
 Assume: 

♦  Round Gaussian beam and smooth focusing, constyx == ββ . 
♦ Zero lattice non-linearity: 0),( =Δ yxlat aaQ  
♦ No wake dependence on amplitudes: ( ) cnnyxc QaaQ Δ=Δ ω,,  

 Denote 
♦ ( )ηξξ nn +−= 1  
♦ pnn σξσν =  

 For Gaussian distribution that yields the dispersion equation: 
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Effect of Space Charge on Landau Damping (2)  
 Stability boundary can be 

approximated by following 
expression (solid lines) 
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 i.e. contrary to the linear space 
charge case  
♦ the stability diagram is 

shifted only by half of the 
linear tune shift (δνSC) 

♦ The incoherent tune spread introduced by space charge widens the 
stability diagram in accordance with its rms value (0.16 δνSC)  
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Improvement of Beam Stability by Cubic Nonlinearity  
 Assume: 

♦  Round Gaussian beam and smooth focusing, constyx == ββ . 
♦ No wake dependence on the amplitudes: ( ) cnnyxc QaaQ Δ=Δ ω,,  
♦ Contribution of tune chromaticity to the tune spread is much 

smaller than contribution from octupoles  
♦ Cubic lattice non-linearity 

• In the general case a combination of normal and 
skew-octupoles creates , 
  
  

• but we consider the case when only  
2

xxxlat aQQ =Δ  
 Then the tune distribution is set by octupoles  
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Improvement of Beam Stability by Cubic Nonlinearity (2) 
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Stability boundary for positive and negative octupole non-linearity; chromatic rms tune spread is 4 
times smaller than rms tune spread due to octupoles 

 Positive octupole nonlinearity improves beam stability 
 Negative octupole nonlinearity can introduce Landau antidumping 
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Improvement of Beam Stability by Cubic Nonlinearity (3) 
Landau Antidamping 

 In plasma 
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d
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 It is not 
quite 
similar or straightforward in the beam case  
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 For above Eq. and  ( ) 0Im =Δ cnQ  the damping corresponds to 
( ) 0Im <ε  at the mode frequency. The sign of ( )εIm  is 

controlled by the sign of term ),( yxiccn aaQQ Δ−Δ at the mode 
frequency 

 Naive explanation is that in the case of Landau antidumping 
the dependence of incoherent tune shift is not monotonic 
function of amplitudes 
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Improvement of Beam Stability by Cubic Nonlinearity (4) 
Comparison of stability regions  
created by chromatic tune spread 

   
( )ηξσξσσν )1( ++≡= npnpn

  

and tune spread due to octupoles 
   xxO Q2=νσ  

 Octupoles results in  
♦ 30% larger height and little dependence on 

the space charge 
♦ ~2 times larger width  
♦ Smaller shift of the stability region due to 

space charge (allows ~5 times larger ΔνSC) 
♦ No dependence on harmonic number 

 Consequently, better beam stability for 
low harmonics 

 But large space charge requires large 
octupole non-linearity which can reduce 
beam life time at large amplitudes 
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Impedances and Tune Shifts due to Vacuum Chamber 
 We only consider the case of small beam, σbeam << a, b  

 High order multipoles (> quad) excited by walls can be omitted  
 By definition Incoherent tune shift icQΔ  is created by ( )xxQF ic −Δ−∝  

♦  It has two contributions  
• Direct space charge ),(),( yxSCxyxic aaaaQ δν≡Δ  
• Incoherent tune shift due to quadrupole field excited by beam 

interaction with vacuum chamber walls  
– Wall incoherent tune shift - icWQΔ  

 By definition Coherent tune shift cQΔ  is created by xQF cΔ−∝  
♦ It also has two contributions 

• From Dipole field – it is excited by transverse impedance 

( )CZxiIE nbeff /)(ω⊥⊥ −=   =>  
( )

02 Z
ZNr

iQ np
c

ω
πβγν

⊥−=Δ  

• From quadrupole field excited by  
- Wall incoherent tune shift - icWQΔ  
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Transverse Impedance  
Impedance of Round Chamber 

 At low frequencies, f≤100 MHz, the 
impedance is dominated by wall 
resistivity and interaction with 
vacuum chamber walls 

 For sufficiently low frequency,  
d δ ≤ a2: 
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where )(xΘ is the Heaviside step function 
♦ Effect of wall thickness can be 

important at small frequencies 

1 103× 1 104× 1 105× 1 106× 1 107×
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1 105×

1 106×

1 107× f0 νx 25−( )⋅
Z
[O/cm]

−Im(Z)

Re(Z) 

f [Hz]

Z⊥ for FNAL Recycler if vacuum 
chamber would be round;  
solid lines are for finite thickness 
stainless steel chamber built with 
exact formula: a=22 mm, d=2 mm, 
C=3.33 km, Ek=8 GeV 
dashed lines are built with Eq. (1) 
Finite thickness of the wall becomes 
important at f ≤ 100 kHz 
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Transverse Impedance (2) 
Impedances of flat vacuum chamber 

 For a<<b one can approximate a vacuum chamber 
by two conducting planes at distance 2a 

 Then the impedances are§ 
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♦ Both impedances are proportional to 

the impedance of round chamber 
• Horizontal one is 2 times smaller 

than for the vertical one 
 Similar to the round chamber the above 

equations are not applicable at low 
frequencies where  d δ ≥ a2 

                       
§ Yokoya, 1993 

                                 Y 
 
  2a                                     2a         x 
 
 

                     2b 
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1 106×

1 107× f0 νx 25−( )⋅
Z
[O/cm]

f [Hz]

Zy for FNAL Recycler; all parameters 
are the same as on the previous page 
solid curves are built with exact 
formulas for flat chamber 
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Incoherent Tune Shifts due to Interaction with Walls  
Tune shifts related to particle displacement relative to the 
beam center 
Round Vacuum Chamber   

 Beam displacement excites dipole field in a round vacuum chamber   
 There are no incoherent tune shifts  

Flat chamber case  
 Summing multiple reflections of beam current in walls one obtains 
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                Impedance + ΔQicW  ≡ ΔQc        ΔQicW          
 That results the wall incoherent tune shift (Laslett tune shift) 
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Incoherent Tune Shifts due to Interaction with Walls (2) 
Incoherent Tune Shifts due to interaction with steel of dipoles 

 Beam interaction with steel of dipoles creates DC magnetic field  
♦ It is not affected by beam betatron motion  

 Therefore these tune shifts can be related to the lattice tune shifts 
♦ They can be easily compensated by intensity dependent tune 

correction 
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 Note that this tune shift can also be ascribed to the wall incoherent 
tune shift  
♦ As will be seen below it would not change the dispersion equation 
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 Incoherent Tune Shifts due to Interaction with Walls (3) 
Effect of Incoherent Tune Shifts on Dispersion Equation  

 Formally “DC” and “AC” incoherent tune shifts go to different parts of dispersion 
equation  

 

        Impedance + ΔQicW                    Direct space charge + ΔQicW               
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 In the final score it does not change the result, i.e. ΔQicW and ΔQd do not change the 
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Stability Boundary Estimates 
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 For γ >>1  ( ) ( )cncn QQ ΔΔ Im~Re . 
♦ Simple stability criterion can be 

found from stability diagram 
♦ Good coincidence with Recycler 

stability measurements 
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Practical recommendations 
 For large space charge the stability boundary is usually determined 

by particle population in tails 
♦ Tails are not known in advance and do not stay constant in long run 

=> An estimate can be the same accurate as detailed calculations 
 If beam is bunched => picture is much more complicated 

♦ Chromatic tune spread => synchrotron freq. spread 
♦ Detuning wake, variation of betatron frequency along bunch 
♦ Single bunch and multi-bunch modes 

• If bunch length is about distance between bunches both signs 
of chromaticity stabilize instability 

 Octupoles can improve beam stability but can adversely effect 
dynamic aperture 

 Transverse damper suggests better way of instability stabilization 
♦ FNAL FPGA based dampers have bandwidth ~70 MHz 
♦ Higher frequencies are stabilized by chromatic tune spread 
♦ Booster damper is under commissioning now 

• Fast cycling synchrotron (15 Hz, 400 MeV → 8 GeV)  
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Conclusions 
 Beam space charge separates coherent and incoherent tunes which 

strongly affects the beam stability  
♦ It is one of major limitations of the beam brightness 

 Beam stabilization can be achieved by  
♦ Chromatic tune spread 
♦ Octupole non-linearity  
♦ Electronic feedback system  

• Frequencies above feedback band are suppressed by chromatic tune spread 
• Recent developments in electronics make it more promising 

 Wall incoherent tune shift moves both coherent and incoherent 
tunes by the same amount resulting that it does not affect stability 

 FNAL Recycler has very long bunch and therefore the developed 
formalism can be applied with little modifications 
♦ In general there is decent coincidence with estimates 
♦ Significant variability of stability boundary is observed  

• The reason is that the tails are responsible for beam stabilizations but 
their population depends on how the beam has been cooled 


