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=i INTRODUCTION FAIR

-
Head-Tail modes can limit the
high-current operation of SIS-100,
S especially during the 1 sec accumulation at injection y

4 specific FAIR parameters:
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particle tracking simulations
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=N SIS-100 PARAMETERS FAIR

at injection
circumf. 1083 m| | U*7 Ny, = 0.625 x 107
Q 18.73 Epeam = 200 MeV /u | dp/p = 3.0 x 1074
v ' 3 = 0.566 v = 1.21
Qs 0.0017 1| ¢ — 156k n=—0.67
Tt 23.14 €, = 13 mm mrad €, = 36 mm mrad
Space Charge tune shift: 0.25
Bunch length: 61 m = ¢,=100°
Beam radius: 13 mm (vert, KV-equiv.)

Chamber radius: 30 mm (vert, dipole ch.) = 20% of SC

Head-Tail Dynamics changed by: < Image Charges (coher)\
» Space Charge (incoh)

* Synchr. Nonlinearity
- J




=N COASTING BEAM FAIR

* linear Space Charge:
loss of Landau damping
 nonlinearity in SC:
enhances stability
from € or octupoles
* Image Charges:
shift of the coherent line

>

has been confirmed by PIC
simulations with the

PATRIC code

(recent PRSTAB paper),

but: non-self-consistent
approaches for space charge
are not always applicable
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=N FROM 2D TO 3D FAIR

A shift provides tune spread,
both for Image Charges and Space Charge

Resistive Wall
A Qcoher

el

0€2 = AQ

coher —

max

Coupling with synchrotron dynamics provides
new mechanisms and changes damping characteristics

3D description is more involved,
especially for long simulations with Space Charge

Threshold behaviour of instabilities
(Had-Tail — TMCI) limits the scaling of impedance and CPU time



=K HEAD-TAIL FAIR

wo 1 C ZP(_?")ZL(W}J) hp(wp — we)

Sacherer Theory: AQ,, =
Yol+mLy, >ophm(wp — we)
Qo€
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SIS100 Resistive-Wall impedance Power spectrum of Head-Tail modes
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for SIS100: a head-tail mode m=4 with t=70ms
the theory not valid for strong image charges AQ_.,, > Q. and

space charge AQg. > Qg



==X TwoTooLs: Pic copes FAIR

our strategy on the way to a correct description
of these effects on Head-Tail instability:
two different tools

PATRIC HEADTAIL
(development at GSl) (joint work with G.Rumolo)
short-term simulation: long-term simulations:
resolve betatron oscillations once per turn
Impedances Z,(Q2) [add. W (s)] wake fields W (s)
self-consistent SC beam-beam SC
static space grid flexible space grid
coasting / long bunches short bunches

Head-Tail modes: consistency with the Sacherer theory
was confirmed in the recent work
(E.Metral, G.Rumolo,R.Steerenberg,B.Salvant,PAC'07)



=N WAKE-FIELD MODULE FAIR

Resistive wall (thick-wall) wake field

3
CLwauJ Zo (/3) Interaction Point

Wrw(z) = — 3 -

Z Owall \T

Ap, = ] ¥ (s) Waw(2)dz
¥ = kn,T
z = 81 — 89

take into account the phase advance:

instead of
Apiz = Y(s1) Wrw(z)

wake fields

we use
Apiz = ¥(s.) Wrw(z)

(verified with the coasting beam)




IE=NX HEAD-TAIL MODE FAIR

HEADTAII, HT mode example PATRIC
for SIS100
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IMAGE CHARGES

FAIR

200 |

150

Effect of Image Charges
on Head-Tail modes

-0.03 -0.02 -0.01 0.00
AQ

coh

simulations with the HEADTAIL code,
AQ,,, at the bunch center (Q,=0.0017)




=N IMAGE CHARGES FAIR

Coherent Spectrum of the transverse bunch oscillations
with Image Charges included
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shifts are consistent with the

perturbation theory (A.Chao book),

however, no Strong Head-Tail set in with large AQ_;,



=N SPACE CHARGE FAIR

Effect of Direct Space Charge
on Head-Tail modes
preliminary results

PATRIC HEADTAIL
frozen Space Charge beam-beam
for KV beam Space Charge module
| |
damping effect no effect

to be clarified: < applicability of the beam-beam module
 applicability of non-self-consistent approaches



=N SPACE CHARGE FAIR

Coherent Spectrum of the transverse bunch oscillations
with Space Charge included
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the coupling (uniform bunch) theory
predicts shifts of m=0 coherent lines



=N NONLINEAR HF FAIR

Effect of nonlinear HF

on Head-Tail modes

preliminary results
literature: statements that nonlinearity

in synchrotron oscillation damp all Head-Tail modes
for certain chromaticities

Sacherer theory only predicts independency
of © from the value of Q. (small Q,)

confirmed in simulation

HEADTAIL: no effect from the nonlinearity
PATRIC: a damping effect

the discrepancy to be clarified



NONLINEAR HF

FAIR

Coherent Spectrum of the transverse bunch oscillations
with Nonlinearity in synchrotron oscillations included
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G SUMMARY FAIR

Head-Tail modes for FAIR synchrotron SIS100 must be studies
taking into account:
* Image Currents

* Space Charge
* Nonlinearity in synchrotron oscillations

Particle tracking simulations employing two different tools
Is chosen to deal with the problem

Simulations with Image Currents taken into account
suggest a damping effect, without triggering TMCI

First simulations with non-self-consistent approaches for
Space Charge reveal discrepancies

The role of synchrotron nonlinearity should be clarified



