
Simulations of Space-Charge Effects
in an FFAG Using Time-Based

Tracking in PTC
Dan T. Abell, Andrey V. Sobol (Tech-X Corporation)

Etienne Forest (KEK)

HB2008, Nashville, TN, 25–29 August 2008

The Why of Time-Based Tracking

2

For accelerator codes that use s-based tracking, the typical approach
to including space-charge effects relies on converting a “pancake” of
space-charge at fixed s to a particle bunch at fixed time. Perhaps most
common is the ballistic transformation from pancake to particle
bunch. Such an approximation can work well for short bunches, but
not for long ones: The optics of the machine can significantly modify
the bunch shape away from that given by the ballistic approximation
—especially for long bunches.

The How of Time-Based Tracking

3

Any high-order s-based integrator may be converted to a first-order
time integrator provided information is available about the
three-dimensional environment. The Polymorphic Tracking Code
(PTC) has complete knowledge of the 3D environment about each
node of integration.

PTC checks—node by node—to determine the integration node in
which a particle reaches a given time τ. PTC identifies both the
appropriate integration node and the amount of time δτ between the
time t at the start of the integration node and τ. PTC then returns the
particle to the integration node's entrance and drifts that particle
forward by the distance δs corresponding to δτ. If the element is a
drift, the position of the particle at time τ is exact. Otherwise, the
particle position is only first-order accurate. (See figure below.)

In the absence of collective effects, we recover the original PTC.

The How of Time-Based Tracking (cont.)

4

PTC has Complete 3D Information
About Each Node of Integration

5

Each of PTC’s integration nodes can report where is it in three-dimensional space.

type integration_node
 !...
 real(dp), pointer :: ent(:,:),a(:) !entrance frame and origin
 real(dp), pointer :: exi(:,:),b(:) !exit frame and origin
 !...
 type(integration_node), pointer :: next
 type(integration_node), pointer :: previous
 !...
end type integration_node

The 3ⅹ3 matrices ent and exi describe—w/rt the global frame—the local frames at entrance
and exit of the given integration node.
The three-vectors a and b describe the origins of those frames.

The pointers next and previous point to the next and previous integration nodes.

6

 type probe ! essentially a particle
 real(dp) :: x(6) ! phase-space data
 type(spinor) :: s ! spin data
 logical :: u ! set .true. if particle lost
 type(integration_node), pointer :: lost_node
 end type probe

 type temporal_probe ! ‘particle’ with “temporal” information
 type(probe) :: xs ! basic particle info
 type(integration_node), pointer :: node ! what node am I in?
 real(dp) :: ds, pos(6)
 end type temporal_probe

The distance ds denotes the (very approximate) distance the particle has traveled
inside the node—assuming a drift.

The position pos(6) denotes the actual position of the particle in an absolute 3D frame.

PTC has Data Structures for Particles and
Beams with Temporal Information

PTC has Data Structures for Particles and
Beams with Temporal Information (cont.)

7

 type temporal_beam
 integer :: n ! number of particles
 type(temporal_probe), pointer :: tp(:) ! temporal_probe array
 real(dp) :: ent(3,3),a(3)
 real(dp) :: p0c, total_time ! beam reference momentum and time
 type(integration_node), pointer :: c ! location near a(3)
 type(internal_state) :: state ! defines ‘state’ of simulation
 end type temporal_beam

A temporal_beam is a collection of temporal_probes.
It must be allocated: call alloc(b,n,p0c)
The initial beam frame and origin are defined in ent and a.
Set initial particle locations and momenta w/rt ent and a:
 b%tp(i)%pos(1:3) = (x,y,z)
 b%tp(i)%pos(4:6) = (px,py,pz)/p0c ! kinetic
Particles are placed on the correct integration nodes by
 call position_temporal_beam(layout,b,state)

 call track_temporal_beam(b,cdt,state)
 call space_charge_kick(b,cdt)

 0
 2e+08
 4e+08
 6e+08
 8e+08
 1e+09
 1.2e+09
 1.4e+09
 1.6e+09
 1.8e+09
 2e+09

 0
 10

 20
 30

 40
 50

 60 0

 10

 20

 30

 40

 50

 60

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

Charge Density on a 61x61x61 Grid

"rho0025" matSpace-Charge Computation

8

Given complete 3D information
about the beam, compute

• average momentum,
• beam rest frame,
• rest frame electric potential,
• and momentum updates (kicks).

The present Poisson solve is
performed using either a
“light-weight” Poisson solver we
developed, or portable
high-performance tools from
the PETSc library.

May implement others.

Time-Based Tracking

9

To track a temporal beam for a time c*dt we

 call track_temporal_beam(b,cdt)

This call not only pushes the particles through the
integration nodes, it also updates pos(6), which gives
the full 6D particle information w/rt the global
frame.

This figure shows pos(1), x, versus pos(3), z,
from time-based tracking for a long (σz = 20 cm)
temporal_beam in the Los Alamos PSR with
eight time-steps of cdt = 5.0d0.

Note the curvature of some of the beam snapshots,
present when part, or all, of the beam lies within a
bending magnet.

x /m

z /m

• PTC is an excellent tool for modeling FFAGs
because it makes no approximations in the
transverse or energy variables, and because it
contains complete information about the 3D
environment of the particle beam.

• Hard edges in the variable s lead to an
unavoidable loss of symplecticity in the time
domain. (Not an issue for FFAGs.)

• Working on
– space-charge solver
– acceleration
– realistic magnets (fringe fields)

NOTE: An updated manual for PTC is currently under development.

Summary

10

