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Stability Contour from Meétral and Ruggiero

e Stability plot made for Fermilab

Booster beam, with trans. dist.
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e Needs Re Av.,, more than ~ —0.2 for
Landau damping.

But inductive wall cannot provide it.

e Then, octupole spread is of not much
help.

e How can the Booster beam stable?

Fermilab Booster near injection
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octupole spread ~ £0.36.



Can Electron Cloud Neutralize Space-Charge?

e Electron cloud saturation can
occur if SEY > 1.6.

~100% neutralization on average.

e But electron density inside bunch

region not large.

e Only 19% within 2 o’s.
Not large enough to cancel

space-charge significantly.

e Also large amount of e-cloud
produces severe beam instability.
But this has not been seen.
Maybe SEY< 1.6 and no e-cloud

accumulation.
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Property of Coasting Beam

e Métral and Ruggiero stability contours

apply to coasting beam only.

e In Fermilab Recycler, we do see such
instability driven by wall
resistivity. The p beam is long and

syn. osc. is slow (Tsyn~1 s).
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e Instability observed with

coasting p beam.



Effects of Bunching

e Coasting beam do not contain —
particles with small sp ch - — 3DGaussian |
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Dispersion Relation of a Bunch

e Dispersion relation from Métral and Ruggiero:
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e Extend to a bunch:
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e Incoherent tune shifts Av,(J,, J,) include:
1. Octupole driven tune spread,
2. Space-charge tune shift.
Space charge force is fitted to obtain lowest nonlinear term.

e It is nice that the transverse part can be integrated analytically.

So numerical integration is necessary only over z.



Stability Plot of a Bunch

e Choose a generalized elliptical

distribution —— n=6.0 (near Gaussian)
—— n=2.6 (near cosine square)
n n=1.0 (parabolic)
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e We clearly see a Landau damped L s Vi
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region even when Re Aveo, = 0 Re Av,gp
for n = 1.

e Stability limit: 7m Av.., ~ 0.002. when octupole spread ~ 0.36.

Without Landau damping, this amounts to growth time 7 = 0.17 ms.

e Stability limit drops very fast as octupole spread decreases,

e.g., to 0.0002 when octupole current is reduced to 30%.



Coherent Tune Shift vs Impedance

e Solving Sacherer’s integral equation and ignoring mode coupling, we get

N pumk
[Aycoh} ¢ il 3
pm 2myvg Ly eff
umk - 2
ZE|| = MYzt wn) Pe(wn—we)|

with w, =(Mn+p+vg+mus)wg
S\mk(wn) is spectrum of mode mk

and Hermite modes will be used in computation.

e Notice that one value of Av.,, corresponds to a combination of many

values of Zi.

e This explains why Av.n is used in stability plot rather than ZlL.



Application to Fermilab Booster

Transverse Impedance

Booster consists of 60% unshielded

magnets and 40% beam pipes.

e Imp. of laminated magnets has been

computed.

Real part bends back to zero around

80 MHz.
It looks like a broad-band
and does not contribute much to

coupled-bunch instabilities.

Beam pipes: 2 f

which is too small to be shown.
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Coupled-Bunch Instabilities

e 84 bunches at 6 x 1019 each.

Vertical tune v, ~ 6.8.

e Most unstable coupled mode is
p=—".
But lamination contribution shifts it
to u=—12.
For the m=0, k=0 mode,

AvVeon = —0.26 +20.00023

which is inside stable region.
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e Without Landau damping, this corresponds to growth rate 7 = 1.48 ms.

e Chromaticity will not lead to modes with much higher Zm Av g.
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Single-Bunch Head-Tail Instabilities

e Only broad-band contributes. Re Av,,, 30
&y # 0 is required for instability. o TZ

e Most unstable: mode m = 0 moved to -+ =
broad-band imp. :;z
Requires £, ~ 99, too large. ~30
Booster operates at most needs £-=759

between &, ~ %10, since v, ~ 6.8.

o At &, = +10,
Aveon = —0.025 4 20.0022,
on edge of stability region.

£,=—10

Power spectra

e Booster usually operates at &, < 0 near injection (below transition) so

that m = 0 is stable, modes |m| > 3 will be unstable.

e To make mode |m| = 4 most unstable,

needs &, ~ —12 to move it to broad-band peak.

Then, 7m Av.., =0.000052, very small, certainly inside Landau damped

area.
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e This implies that all head-tail modes
stable near injection.

e Reasons:
1. slip factor rather large, n ~ —0.4154
near injection, making ¢, inefficient to
move power spectra.
2. peak of Hermite modes decrease as

—|m]|

e . Higher order modes will not

contribute to large growth.
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e This makes Booster stable near injection even if £, has the wrong sign if it is

not too big.

e This will not be true near transition.

Power spectra can be shifted by large amount even when [£]| is small.

But space-charge decreases by very much, so that octupole-spread damping

becomes more efficient.



Conclusion

e We derive dispersion relation for a bunch with strong space charge plus
octupole tune spread, and map out the stability contour.

e Stability plot of Av.,, shows finite Landau damping region even at
Re AVcoh = 0.

e Applied to Fermilab Booster near injection with octupole tune spread of
+0.36, this implies Landau damping when 7Zm Av.., < 0.002.
Without Landau damping, this corresponds to growth time 7 2 0.17 ms.

e Both single-bunch and coupled-bunch instabilities should be Landau
damped with reasonable chromaticity |£,| < 10 (near injection).

e We now understand how octupole tune spread can provide Landau
damping to a bunch with strong space charge, but not necessary to a
coasting beam.



