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Abstract 

 
 
Electricity distribution systems are experiencing outages due to a phenomenon known as local 
voltage collapse. Local voltage collapse is occurring in part because modern air-conditioner 
compressor motors are much more susceptible to stalling during a voltage dip than older motors. 
These motors can stall in less than three cycles (0.05 s) when a fault, for example, on the 
subtransmission system, causes voltage to sag to 70 to 60% of nominal. The reasons for this 
susceptibility are discussed in the report. During the local voltage collapse, voltages are 
depressed for a period of perhaps 1 or 2 minutes. There is a concern that these local events are 
interacting together over larger areas and may present a challenge to system reliability. An 
effective method of preventing local voltage collapse is the use of voltage regulation from 
distributed energy resources (DER) that can supply or absorb reactive power. DER, when 
properly controlled, can provide a rapid correction to voltage dips and prevent motor stall. 
 
This report discusses the phenomenon and causes of local voltage collapse as well as the control 
methodology that the authors have developed to counter voltage sag. The problem is growing 
because of the use of low-inertia, high-efficiency A/C compressor motors and because the use of 
electric air-conditioning is growing and becoming a larger percentage of system load. A method 
for local dynamic voltage regulation is discussed which uses reactive power injection or 
absorption from local DER. This method is independent and rapid and will not interfere with 
conventional utility system voltage control. The results of simulations of this method are 
provided. The method has also been tested at the ORNL’s Distributed Energy Communications 
and Control (DECC) Laboratory using its research inverter and synchronous condenser. These 
systems at the DECC Lab are interconnected with an actual distribution system, the ORNL 
distribution system, which is fed from the Tennessee Valley Authority’s 161 kV subtransmission 
backbone. The test results are also provided and discussed. The simulations and testing show that 
local voltage control from DER can prevent local voltage collapse. Our inverter-based DER can 
start to respond in 100 µs or less to the start of a transient voltage change; our rotating-based 
DER is slower but still can start to respond in milliseconds. The results also show that the control 
can reach a new steady-state operating (reference) point so quickly, within 0.5 seconds, that it 
does not interfere with conventional utility methods. With regard to air-conditioning stall, 
although the 0.5 s steady-state response may not be fast enough, our controls will result in 
immediate response by the DER. With enough reactive power output from multiple DER, they 
could keep the voltage raised high enough and long enough to prevent stalling. As indicated in 
the report, not all air-conditioner compressors will begin to stall at once; therefore, DER should 
be able to at least mitigate a complete stalling of the air-conditioners even if the voltage sags 
below the stall voltage for some units. 
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1 INTRODUCTION 

1.1 Effect of reactive power on blackout events 
Reactive power supply is the key controller of voltage in alternating current (ac) power systems. 
The supply of reactive power, as with capacitive loads, will cause voltage to rise. Conversely, the 
absorption of reactive power, as with inductive loads, will cause voltage to drop. Dynamic 
sources of reactive power can rapidly change the amount of reactive power supplied or absorbed. 
Generators and solid-state devices such as static var compensators (SVCs) are the most common 
dynamic sources of reactive power. When a generator has additional reactive capacity that it can 
supply immediately when needed, it is said to be holding reactive reserves. 
 
During a period of system stress, excess current flows to the load, the excess flow causes more 
reactive power absorption on the transmission lines, and voltage sometimes droops. Reactive 
reserves must be available to support voltage during system contingencies. At the beginning of 
the Northeast blackout of August 14, 2003, for example, all the reactive reserves in northern 
Ohio were exhausted, and voltage continued to fall and became unstable. Reactive power 
supplied locally has more impact than reactive power supplied from distant generators. Reactive 
power supplied from distant generators must flow on transmission lines, where it is absorbed 
(see Figure 1-1). Reactive power supplied locally could be a major player in improving system 
reliability as well as improving system efficiency by reducing congestion. 

1.2 Areas experiencing problems 
There are presently large-scale areas of “voltage susceptibility" that are known to have 
inadequate reactive reserves. On August 14, 2003, one such area was the Cleveland - –Akron, 
Ohio area. Other areas of voltage susceptibility that exist today are primarily located in urban 
centers. A relatively new phenomenon, micro-voltage collapse, is characterized by voltage 
instability occurring on individual distribution circuits. This instability is due to the fact that 
reactive power absorption can increase suddenly when large numbers of motors stall, e.g., during 
a subtransmission fault. This can pull down local voltage even though the subtransmission 
voltage may be marginally adequate.  Induction motor stall reduces the motor power factor and 
increases current flow to the motor by about a factor of 6 and thus the current flow on the 
distribution circuit substantially. Motor stall in air-conditioning compressors is now much more 
rapid as a result of the extremely low inertia of energy-efficient motors. Distribution circuits that 
have a large percentage of air-conditioning load, such as those in Southern California, Arizona, 
and Florida, are susceptible. Ten years ago, 25% was considered a large percentage of air-
conditioning load.  Today, there is anecdotal information of air-conditioning load reaching 70% 
and published reports of up to 50%. These levels of air-conditioning motor load truly present a 
concern, because if several circuits stall at the same time, the resulting level of inductive current 
flow may cascade into a wider-scale voltage collapse. 
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Figure 1-1. Transmission line absorption of reactive power. 

1.3 Problem providing/transmitting reactive power 
Transmission lines are inherently inductive (see Figure 1-1). The reactive power that is absorbed 
by transmission lines is equal to the square of the current flow multiplied by the inductive 
reactance. This means when a small amount of current is flowing, a very small amount of 
reactive power is absorbed. To make matters more complicated, transmission lines are also 
capacitive. The capacitance provides a supply of reactive power which is proportional to the 
square of voltage.  Thus, at very light current flows, the line is capacitive.  As current flow 
increases, at some point the capacitance balances the inductance and, at high current flows, the 
line becomes inductive. The characteristic impedance of a transmission line is expressed in terms 
of the surge impedance loading (SIL), or natural loading, which is the loading at which reactive 
power is neither produced nor absorbed. Loaded below its SIL, a line supplies reactive power to 
the system, tending to raise system voltages. Above the SIL, the line absorbs reactive power, 
tending to depress the voltage. This natural phenomenon makes it very difficult to supply 
reactive power across a transmission line to help support voltage. At high flows, the line absorbs 
the reactive power, depressing voltages even more. The old adage is “Reactive Power Does Not 
Travel Well.” 
 
Newer loads—such as high-efficiency motors, compact fluorescent light (CFL) bulbs, and  
adjustable speed drives—are helpful in providing more energy efficient loads that use less active 
power but problematic in terms of their reactive power use as is discussed later. 

1.4 Stalling of induction motors 
Induction motors typically have a full-load power factor of around 0.8 and a stalled- or locked-
rotor power factor of less than 0.5. This low locked-rotor power factor tends to depress local 
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voltage when a large motor is started or when large numbers of small motors are stalled. An 
important change seen in the last few years is that high-efficiency motors are much more likely 
to stall because of their lower inertia and lower torque. Large groups of energy efficient motors 
used in air-conditioning compressors are now stalling together causing "microvoltage collapse". 
There is a concern that these microvoltage collapse events will begin to “lump” or interact 
together and cause large-scale voltage collapse. Other new energy-efficient loads also present 
problems. CFLs have a power factor of 0.5.a In some states, legislation is being considered to 
ban the sale of conventional incandescent bulbs, which have a power factor of 1.0; in that case, 
all the new “more efficient” lighting load would have a power factor of 0.5. Another developing 
problem is the use of adjustable speed drives for motors. In the past, when voltage drooped, 
induction motors slowed down slightly, and the motor load often decreased with the cube of the 
speed change. This had a "healing" effect for the system when an abnormal event occurred. 
When voltage drooped, load also dropped, offsetting the voltage decrease. This load drop was a 
critical part of reliable system operation. Today, when voltage drops, adjustable speed drives still 
supply the same voltage and frequency to the motor and thus eliminate some of the inherent load 
response. 

2 VOLTAGE EFFECT ON MOTOR LOAD AND POWER SYSTEM RESPONSE 

2.1 Effect of voltage on motor torque and stalling. 
For the sake of completeness, this report will first discuss the effect of air-conditioner motor 
stall, as a stalled motor consumes six times as much electrical load, in general, as a running 
motor. Torque is the rotational force applied by the motor shaft to turn the compressor. Air-
conditioning compressors sometimes require high torque to start. Unfortunately, the torque 
delivered by an induction motor decreases  with the square of the voltage. At 80% voltage, the 
motor will be delivering 64% of its rated torque. If the motor cannot produce enough torque to 
turn the compressor, it will stall or stop turning. 
 
Voltages on the electric power system sometimes droop for an instant when there is a fault (short 
circuit) on the system. On a hot day, when the system is under heavy load and voltage has sagged 
to perhaps 90% of nominal, a fault may pull the voltage down to 75% or lower and a motor or 
motors may stall. Once a motor has stalled, it is not likely to start again until the voltage 
recovers. An air-conditioner motor needs its highest torque when it is starting the compressor. If 
the voltage at the motor terminal is not high enough, the motor may not be able to turn the shaft, 
and the motor may continue to stall. 
 
At the precise instant of starting when the motor is not moving, the torque is called locked rotor 
torque. If the motor starts to turn the compressor shaft, the motor current immediately decreases 
as the motor begins to accelerate. If the motor does not have enough torque to turn the shaft, the 
motor will stall and continue to draw locked-rotor current. The locked rotor current is about six 
times greater than the normal full-load current.  As the motor draws locked-rotor current, it heats 
up rapidly. The motor will eventually be tripped by a thermal overload (TO) protective device. 

 
a Standard CFL bulbs have a power factor this poor; a premium, more costly CLF bulb that has a built-in capacitor 
can bring the power factor up to 0.9. 
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Voltage collapse occurs when power systems are under stress and there is not adequate dynamic 
reactive reserve to support voltage. As load increases, voltage sags and local voltage support is 
provided by capacitors. The ability of capacitors to supply reactive power decreases with the 
square of voltage. When voltage sags to 90% of rated voltage, capacitors provide only 81% of 
their rated reactive power. In addition, induction motors slow down and become more inductive, 
absorbing more reactive power and depressing voltage further. As voltage decreases, the effect 
builds on itself exponentially until finally the voltage collapses. 
 
An interesting local phenomenon is now occurring on circuits with heavy air-conditioning loads. 
If a fault on the subtransmission system or some other contingency briefly depresses voltage, the 
air- conditioning motors may stall rapidly. Tests have shown that they can stall in as little as 3 to 
5 cycles [1]. Local areas of voltage collapse are occurring as a result of air-conditioning 
compressor motor stall, sometimes on just one distribution circuit. 
 
Local solution vs. transmission solution: The local solution is to use local dynamic reactive 
reserves operating to meet a voltage schedule to rapidly correct voltage so that the voltage does 
not drop and cause motor stall. The distribution system solution is to build a very stiff system 
with heavier conductors, shorter feeders, lower inductance and lower resistance so that the 
voltage does not sag as much when carrying high current levels. The distribution system solution 
is quite expensive compared with the local (equipment-level) solution. 

2.2 Existing tools and models to study the problem and determine a 
solution 

Distributed energy (DE) systems, such as reciprocating gensets, microturbines and fuel cells, 
provide a means to generate electric power closer to the end-user load more cleanly and 
efficiently. This is especially true if DE is combined with the recovery of waste heat generated 
by the prime mover. The prime movers that generate dc will use inverters to generate ac and 
interface with the distribution system. With the right controls, these DE systems can control not 
only real power (kW) but also reactive power (kVar), which can dynamically regulate local 
voltage near the end-user load. 
 
Traditional power system analysis methods are at best three-phase unbalanced powerflow 
analysis models based on Newton-Raphson and/or Gauss-Seidel iterative methods to calculate 
the bus voltages from quadratic algebraic equations. Most transmission system analysis tools, 
such as GE’s PSLF, use only balanced models and network data. The methods are designed from 
steady-state operational and planning studies of various states and contingencies. They are 
inadequate for studying dynamic regulation of voltage by reactive–power-producing DE 
resources (DER), such as inverter-based microturbines or fuel cells. (Note that PSLF is now 
being expanded to model a composite load that includes small, single phase, motor loads.) 
 
Several important limitations constrain the usefulness of traditional models for analyzing 
systems that include DER: 
 
• A power flow analysis program that provides only balanced analysis will not be able to 

realistically analyze the impact of DE connection and penetration in the distribution system. 
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It is expected that DE will continue to be placed by end-users in the distribution and 
transmission systems as the interest in locally generated power grows, especially any that can 
be generated using renewable resources such as wind turbines and photovoltaic (PV) arrays. 
Another issue is analyzing the benefit of regulating local voltage using DE.  The traditional 
load flow models can analyze the steady-state benefits of DE such as capacity relief, loss 
reduction and to some degree voltage stability only by running numerous cases at lower and 
lower voltage to see when the power flow no longer converges to determine the margin to 
voltage collapse. 

 
• Traditional tools lack the capability to link transmission network and distribution system 

models. Normally, transmission systems are modeled with a balanced power flow program, 
whereas a distribution system is modeled with either a balanced or unbalanced power flow 
program. Furthermore, the transmission system is normally modeled separately from the 
distribution system. In a transmission system model, the distribution system loads can be 
lumped (by equivalence) into a few large loads since the primary interest is the transmission 
system. Conversely, the distribution system model does not normally include the 
transmission system network in any great detail. In fact, normally only the substation voltage 
and transformer impedance is modeled on the load side of an infinite bus. 

 
• Existing models cannot dynamically access the impact of DE controls on improving 

distribution and transmission system operation. These traditional analysis models do not have 
the capability to model the controls developed by the authors for providing autonomous and 
adaptive local voltage control. In order to adequately model these near-real-time controls, 
their impact on voltage regulation and their interaction with system-level voltage control of 
capacitor and line regulators, a much more flexible mathematical analysis tool such as 
Matlab/Simulink must be used. Unlike traditional modeling, Matlab/Simulink provides the 
ability to simulate the dynamic control logic of the DE inverter controllers.  Typically, 
distribution utilities use commercial programs such as EMTP or ATP. 

 
• Models are needed that can predict the behavior of air conditioners (A/Cs) during abnormal 

voltage events. Traditional power flow analysis methods normally treat loads as constant 
power or what is called a ZIP load, which is a combination of constant impedance (Z), 
constant current (I) and constant power (P). In the case of constant power, the model will 
continue to use the same power regardless of the voltage level (i.e., at lower voltage, it will 
draw more current). More recently, a composite load model that uses a motor load in parallel 
with the ZIP load has been used. Actual data have shown motor loads to be important to 
match load performance during an abnormal event, such as a fault, which is a more nonlinear 
load. The low-inertia compressor motors of high-efficiency A/Cs make them much more 
susceptible to stalling (rotor lockup) when the voltage drops below 70% or 60% of nominal. 
Therefore, it is extremely inaccurate to model the A/C’s performance during a stall with the 
standard motor model. A more accurate representation for the stalled compressor is to model 
it with a constant impedance model instead. 

 
In testing conducted by Southern California Edison (SCE), high-efficiency A/Cs with seasonal 
energy-efficiency ratios (SEERs) ranging from 10 to 13 were tested and found to stall at low 
voltage. Currently, only high-efficiency A/Cs and heat pumps with SEERs of 13 and higher are 

 



Local Dynamic Reactive Power for Correction of 
System Voltage Problems 

 ORNL/TM-2008/174 

 

~6 ~

available making the stall of A/C compressor motors more likely. The stalling can occur within 
three cycles (or 0.05s) of a single-phase or three-phase fault, requiring a time-based instead of a 
steady-state analysis based on algebraic equations and lumped parameter models. On a small 
scale, a mathematical program such as Matlab/Simulink can be used to model both the 
characteristics of the inverter-based DE controller and the response characteristics of system 
voltage regulation and loads such as high-efficiency A/Cs. A large-scale analysis using the same 
mathematical modeling program requires creating an equivalent model of the distribution and 
transmission system to keep the analysis and models manageable. Such as effort should be 
reasonable since the focus is on the specific performance of the DE controller and benefit of 
regulating voltage dynamically for various abnormal events such as A/C stalling. 

2.3 Maintaining System Reliability 
To maintain the reliability of the electric power system at an acceptable level, risks to voltage 
stability must be controlled. The loading of major transmission corridors is often limited by 
stability concerns in the West (it is thermally limited in the east). 
 
Stability is often dominated by the percentage of motor load. Reference [1] describes a study of 
voltage sensitivity in which the percentage of motor load modeled was based on actual detailed 
surveys on a substation-by-substation basis. The detailed surveys showed that roughly 52% of 
the total system load was motor loads. When this 52% was reduced to the 20% often used by the 
Western Electricity Coordinating Council (WECC), the voltage instability disappeared. The 
authors of reference [1] state that “The dynamics of voltage recovery and stability is highly 
influenced by the characteristic and fraction of motor load in the system.” It is the belief of the 
authors of this report that the amount of motor load in the system today is being significantly 
underestimated because high-SEER air-conditioning compressors have a much higher load 
during hot weather than their low-efficiency predecessors, especially at stall conditions. This 
load is not used in system models because modelers are not aware of this feature of high-SEER 
air-conditioning, although SCE detected similar stalling performance effects with units from 
SEER 10 to 13.  This challenge is going to become much more pronounced in California in the 
future as regulations require that only high-SEER air conditioning be installed. (This issue is 
discussed further in Section 3.2.) 
 
Another study of air-conditioning motor stall [2] shows the response of the sample system after a 
5-cycle fault. According to these authors, “With 2.5% prone to stall motor load, the time for the 
voltage to recover to 80% of nominal is 0.88 s, compared with 0.36 s without stalled motor load. 
At 5% prone to stall motor load, the final voltage only reaches about 74% of nominal. At 10% 
prone to stall motor load, the system goes into voltage collapse.” Reference [2] also points out 
that the motor power factor under stalled conditions is significant in determining the total system 
reactive power demand, and that a lower power factor of 0.45 may be more appropriate for the 
prone-to-stall motors. 
 
In addition, distribution systems are rarely balanced, as we are finding out in our testing. The 
Oak Ridge National Laboratory (ORNL) local voltage regulation method can provide balance 
compensation which greatly improves motor lifetime and efficiency. 
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3 POWER SYSTEM DYNAMIC BEHAVIOR OF LOADS WITH VOLTAGE 
AND TEMPERATURE 

3.1 Power system dynamic behavior with voltage, temperature effect: 
Load models and growing air­conditioning load 

Extended-term dynamic simulation (ETDS) provides insight into the dynamic behavior of a 
power system.  ETDS will show whether voltage problems are driven by slow or fast voltage 
dynamics, for example, whether there are coordination problems with capacitor bank switching 
and under voltage load shedding schemes. It also will provide guidance for fine tuning controls 
of SVCs, synchronous condensers (SCs), etc., so that voltage excursions can be regulated. As we 
will see, it is much easier to nip a voltage excursion in the bud than it is to deal with it after it has 
resulted in voltage collapse. 
 
A typical load model may show motor load to be about 50% of peak system load. The motor 
load will often be a combination of industrial, residential and commercial motors. The remaining 
load may be about 20% constant power load (electronics, motor drives, etc.), 10% discharge 
lighting (CFLs) and 20% constant impedance load (incandescent lighting, ranges, irons, etc.). 
Each of these loads displays a fairly predictable response to voltage changes.  Discharge lighting 
will typically extinguish when voltage drops below 70 to 80%. Adjustable speed drives and 
computers tend to temporarily shut down when voltages drop below 90%. Constant impedance 
loads draw less power as voltage drops. Large industrial motors and commercial motors have 
contactors, or electromagnetic contacts, that open when voltage drops to about 75%. Small 
motors, such as those used in air-conditioning, do not have electromagnetic contacts, when 
voltage sags to 70% or less, these motors may stall, drawing large levels of current from the 
power system.  They will continue to draw large levels of current until they trip on TO 
protection, which may take 10 s or even minutes. ETDS studies have shown that the amount of 
motor load has a significant impact on voltage stability. Small motors that do not disconnect but 
rather stall at low voltage are the most problematic. Even worse, low-inertia motors are quicker 
to stall and drag down system voltage. New, high-efficiency A/C motors have remarkably low 
inertia [1]. 

3.2 Temperature effect on load 
When an A/C unit must operate at higher ambient temperatures, the result is higher refrigerant 
pressures. Higher pressure increases the mechanical torque load for air-conditioning compressors 
[3] and the higher load means the A/C motor will draw more power. A sampling of test data for 
air conditioners operating at high ambient temperatures has been obtained. Newer, high-SEER 
A/Cs are more effective at air-conditioning at an extremely high temperature range than are the 
older units, which tend to drop off in capacity (or unload) more at higher temperatures. This fact 
is probably only important to utilities in areas that experience temperatures over 110°F. 
Compared with many of the older units, new high-efficiency A/Cs can use significantly more 
power in extremely hot weather (115°F) than they use at 85°F. For example, one utility found a 
SEER 10 unit to consume 23% more real power at 115°F than at 80°F whereas a SEER 13 unit 
consumes 55% more real power at the higher temperature [5]. In addition, the SEER 10 sees no 
change in reactive power over this temperature range, whereas the SEER 13 sees a 31% increase. 
This is not to imply that the higher efficiency A/C units (SEER 13) generally draw more power 
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at 115°F than the older SEER 10 units, rather, their peak power draw is higher relative to the 
values drawn at the average cooling mode ambient. 
 
ORNL developed and maintains the Heat Pump Design Model (HPDM), a detailed mathematical 
model that can be configured to model any A/C or heat pump [4]. The model confirms that 
newer high-efficiency A/Cs have a greater rate of power increase during extremely hot weather 
than do older A/C models. There are three reasons for this result: 
 

• The new scroll compressors maintain air-conditioning capacity better than older 
reciprocating compressors over high-temperature conditions. Reciprocating compressor 
capacity drops off more as ambient temperatures increase. 

• The new environmentally safe refrigerant 410A loses efficiency at high ambient 
temperatures compared with the R22 refrigerant still in use in older models.  

• New high-efficiency models typically have an expansion valve that automatically adjusts 
pressure for higher temperature so that the refrigerant is condensing properly. Older 
models typically have a fixed orifice expansion device that does not adjust with higher 
temperature and thus unloads the system more at higher ambient temperatures. 

 
Unfortunately, very little testing on this effect has been found. SCE found in one case that the 
change in power per degree Fahrenheit was 74% higher for a SEER 12 roof top A/C as than for a 
SEER 10 model ([5], page 32). 
 
SCE prepared a second Air Conditioner Test Report [5] which found that the increase in running 
power to a residential SEER 13 A/C could be about 29% higher than the increase for a SEER 10 
A/C. Figure 3-1 shows the increase in power over temperature for the ten units that were tested. 
 
When electrical load is composed of a larger percentage of high efficiency units, the load 
demand will increase more on an extremely hot day than conventional load models would 
predict. This is because (1) system analyses do not assume enough motor load (typically they 
assume 20%),  and (2) current power system modeling tools do not have an accurate load model 
of the high-efficiency A/Cs for both normal and abnormal voltage conditions. The lowest 
efficiency A/C that can be purchased now is a SEER 13. As more and more high-efficiency air 
conditioning is installed, existing utility load models may not reflect this large change in load 
with temperature, and surprising load levels may occur on hot days. That current models do not 
properly show the delayed voltage recovery when A/Cs stall during low-voltage events such as a 
single-phase fault is the reason for the concern. 
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Figure 3-1. Increase in running power (steady-state) of single-phase A/C compressor 

motor with increasing temperature for the SEER 10 to 13 units of reference [5].b 

3.3 Reduction in Margin to Voltage Collapse 
Load modelers say that 27 to 50% of the total electrical load is air-conditioning on a hot day. 
This discussion will assume 27%. According to reference [5], SEER 13 A/C increases in load 
74% more than a SEER 10 unit on a hot day; this discussion will assume a conservative 29% 
increase. If 27% of the electrical load increases by 29%, the total load grows by a factor of 1.078 
on a 115°F day. Why is this a problem? When power system engineers perform studies to ensure 
that a system stays stable on hot, high-load days, one of the concerns they study is voltage 
collapse. They determine what the margin is to voltage collapse with certain levels of power 
flowing in the system. They typically like to have a 5% buffer over the predicted load level. If 
the load is a little higher than the prediction, perhaps 4%, they will still have adequate margin to 
voltage collapse. The rule is that the system must be able to withstand a single contingency such 
as a loss of generator or loss of transmission line and remain stable.  This is known as the n-1 (n 
minus one) criterion. At some future date, when half of the air-conditioning load consists of 
high-efficiency units, the load prediction models may be low by about 7%, or more, on very hot 
days. This unplanned change in load level may encroach on the voltage stability margins. If the 
margin is “eaten up” by an unexpected load increase, then a single contingency may result in 
system collapse. 

                                                 
b From a presentation by Dmitry Kosterev of Bonneville Power Administration, at DOE Air Conditioner Motor Stall 
Workshop, April 2008. 
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4 PROBLEMATIC AND UNIQUE FEATURES OF ENERGY­EFFICIENT 
MOTORS, ESPECIALLY AIR­CONDITIONING MOTORS 

Energy-efficient induction motors typically have lower power factors under stalled conditions 
because the stator is wired with larger conductor wires to reduce I2R losses. When the rotor is 
locked, the current flow in the stator is more inductive [1]. This lower power factor means that 
significantly more current is flowing when the motor is stalled and that the reactive support must 
be much higher. As an example, the National Electrical Manufacturers Association (NEMA) 
Design E (Energy Efficient) motor has a locked-rotor current that is 55% greater than for a 
conventional NEMA design B motor [6]. Because of problems with application, Design E 
motors have been dropped from the NEMA standard and are no longer made. The concern with 
power factor also applies to normal running conditions.  The document Energy Conservation 
Standards Rulemaking Framework for Small Electric Motors [7] describes the approaches the 
U.S. Department of Energy (DOE) anticipates using to prepare energy conservation standards for 
small electric motors. Page 13 of that document states 
 

In addition to the internal losses discussed above, small motors with low power 
factors can induce extra energy losses in the power distribution system that 
supplies electricity to the motor. These increased currents cause additional losses 
in the power distribution system… 

 
It is encouraging that this statement is in the framework document for small electric motors. We 
hope that power factor, both normal and locked rotor, may someday be covered by standards for 
A/C compressor motors. 
 
Unfortunately, small electric motors do not lend themselves to efficiency standardization.  This 
is partially because of the large number of winding and circuit arrangements including: shaded 
pole, split phase, capacitor start induction run, capacitor start capacitor run and permanent split 
capacitor. In addition, the various small motor types have greatly different torque characteristics 
and power factor, both starting and running. This disparity in motors also applies to small motors 
in air-conditioning equipment. One expert has stated “When a motor must be replaced, it’s a lot 
easier for a large three phase unit than a little split capacitor motor, because of the wide variation 
in 48 or 56 frame construction. There’s less standardization. Even NEMA’s standard lead 
coloring— nobody follows it.” [8]. In Canada there is a small motor efficiency standard, C747c, 
that covers the efficiency of various types of small motors. Critics of the Canadian standard point 
out that comparisons of efficiency tests among manufacturers result in a wide spread in nominal 
efficiency [8]. For the purposes of this report, the concern is not that the motor efficiency is not 
accurately identified but that the motor load characteristics are changing dramatically in a 
direction that is problematic for the power system. 
 
There are several techniques for designing a high-efficiency motor. They include a longer core 
length, deeper and wider slots, larger end rings, and a reduced air gap [9]. Each of these design 
measures has its drawbacks; one of the most common drawbacks in designing a high-efficiency 
motor is a reduction in starting torque, or the ability to turn the compressor shaft.  Using larger 

 
c “Energy Efficiency Test Methods for Single- and Three-Phase Small Motors,” CAN/CSA-C747-94 (R2005), 
Canadian Standards Association, 1994. 
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rotor bars to lower I2R loss in the rotor can reduce stall torque [10]. Increasing magnetic flux 
density by reducing the effective turns in the stator winding increases inrush current and lowers 
the power factor. Sometimes high-efficiency motors are designed with long, narrow rotors to 
reduce cooling losses; this can result in lower inertia. The reduced starting torque is especially a 
concern at reduced voltages, as is discussed later. 

4.1 Unique features of air conditioning motors 
High-inertia induction motors tend to maintain their speed during short periods of voltage dip. 
They are in a class of motors known as “robust” motors [2]. Robust motors are typically heavier 
and  have a larger rotor diameter, a greater rotational inertia, and a higher starting torque. Robust 
motors are a different type from the high-efficiency motors now being used in high-efficiency 
appliances. 
 
High-efficiency motors used in A/Cs are now being manufactured with extremely low inertia 
(typically represented by the symbol “H” in units of seconds). Starting torque has apparently 
been such a concern that it was addressed with a design change. A test of motor inertia found it 
(H) to be as low as 0.03 seconds, as shown in Figure 4-1. 
 

 
Figure 4-1. Compressor motor from a 3.5-ton A/C; H = 0.03 to 0.05 seconds.b 

 
New A/Cs manufactured after January 2006 must be SEER 13 or higher to meet DOE Standards 
[7]. The energy-efficient motors being designed to meet this standard have surprisingly high stall 
voltages when they are used to power compressors with high backpressure during hot weather 
(Figure 4-2). Testing has found that A/C motors can stall at voltages as high as 73%. In addition, 
testing by SCE has shown that the motors can stall quickly because they have lower inertia and 
are connected to a low inertia-scroll compressor. 
 

 
Figure 4-3 provides details regarding an A/C motor that stalled in three cycles after the voltage 
dropped, going from full load current to locked-rotor current. Some authors point out that motor 
loads that are prone to stall have a lower power factor of 0.45, which contributes to the system 
being pushed much closer to voltage collapse during system events such as faults or line outages 
[1]. 
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Figure 4-2. Voltage zones (normal, stall and drop-out) for A/C operation. d 
 
 

 
 

Figure 4-3. Rapid stall of A/C motor at 53% undervoltage in three cycles at 80°F and 
thermal overload (TO) trip after 2.3 s. 

 
It would be impractical here to provide a thorough discussion of how an induction motor works 
and is designed, but we will attempt to describe briefly the importance of the shape of the rotor 
bar. The rotor bars are placed in rows along the circumference of the rotor, and rotor current 
flows through them. The current flowing in these bars sets up the magnetic field of the rotor. The 
                                                 
d Figure from presentation by Richard Bravo of Southern California Edison, at DOE Air Conditioner Motor Stall 
Workshop, April 2008. 
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rotor bar shape is one of the major design features in a motor that determines a motor’s torque 
characteristics. The current in the rotor bar crowds toward the top of the bar when the motor is 
started. As the motor accelerates, the current flow penetrates deeper down into the bar. The shape 
of the rotor bar can thus be designed to provide features such as high starting torque or high 
efficiency. To provide high torque, the top of the rotor bar is sometimes narrowed so that the 
resistance is increased. This higher resistance provides a higher starting torque. To provide a 
higher-efficiency motor, the bar is made wider at the expense of starting torque. Figure 4-4 
shows various rotor bar shapes. 
 

 
Figure 4-4. NEMA induction motor rotor bar designs. e 

 
Table 4-1 gives a description of NEMA A to E motors. Note that because of starting problems, 
the NEMA E motor is no longer manufactured. Instead, a high-efficiency version of NEMA B is 
manufactured. The rotor bar shapes shown in Figure 4-4 are for machined copper bars, which 
tend to be more complex than simple cast aluminum bars. The rotor bars shown in Figure 4-5 
from air conditioning compressor motors are cast aluminum bars. 
 

Table 4-1. NEMA motors. 
NEMA Description 
A For all purpose applications, normal starting torque and current, high breakdown 

torque, low full load slip. 
B Similar to A, except lower starting current. 
C High-starting torque, low-starting current. 
D Unusually high-starting torque, low-starting current. 
E Low-starting torque, high efficiency. 

 
From this study, the authors have disassembled four A/Cs and  removed the compressor motor 
and rotor laminations to expose the cross section of the rotor bar. Figure 4-5 shows the rotor bars 
from a 29 year old compressor motor (pre SEER) and from newer SEER 10, 12 and 14 
compressor motors. There is no obvious difference between the 29 year old motor rotor bar 
shape and the SEER 10 and 12 rotor bars. They are typical in shape for general purpose cast 
aluminum bars. However, the SEER 14 rotor bar unmistakably shows the characteristics of a 
high-efficiency rotor—a wider, shallower slot shape. This motor appears to be designed for 
higher efficiency and lower starting torque. 
 
 

                                                 
e Figure 4.12 NEMA cage rotor designs, Electric Machines by Charles A. Gross Electric Machines, ISBN: 
9780849385810, Pub Date: 10/20/2006, CRCPress. 
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(a) 29-year old compressor motor. 

 
 

(b) SEER 10 compressor motor. 

 
(c) SEER-12 compressor motor. 

 
(d) SEER-14 compressor motor 

 
Figure 4-5. Rotor bars from older and newer energy-efficient air-conditioning compressor motors. 

 
New A/Cs manufactured after January 2006 must be SEER 13 or higher. To achieve these high 
levels of efficiency, compressor manufacturers have apparently switched to high-efficiency, low-
torque motor designs. It is reasonable to assume that the issues of low starting torque, low stall 
voltage, and low stall power factor are likely to continue and perhaps worsen and increase in 
importance. 

5 OPTIMUM VOLTAGE FOR AIR­CONDITIONING EFFICIENCY 

5.1 Conventional voltage ranges required by standard 
The American National Standards Institute’s Standard for Electric Power Systems and 
Equipment—Voltage Ratings (60 Hertz) [11] provides a voltage range for satisfactory 
performance (Range A) and a secondary range for acceptable performance (Range B). This 
allows voltage to go from 240 down to 216 V (Range A) or 90% and 208V (Range B) or 87%. 
On 208 V systems, voltage is allowed to go to 187 V (Range A) and 180 V (Range B). 
 
According to this standard for Range A, electric supply systems shall be designed and operated 
so that most service voltages will be within the limits specified for Range A. The occurrence of 
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service voltages outside of these limits should be infrequent. Utilization equipment shall be 
designed and rated to give fully satisfactory performance throughout this range. 
 
Range B includes voltages above and below Range A limits that necessarily result from practical 
design and operating conditions on supply or user systems, or both. Although such conditions are 
a part of practical operation, they shall be limited in extent, frequency, and duration. When they 
occur, corrective measures shall be undertaken within a reasonable time to improve voltages to 
meet Range A requirements. 
 
The B voltage range, although it does have specific voltage limits, has no specific time limits for 
duration or frequency limits specifying how often it may happen. Voltage in this range may be 
allowed to occur many times during the summer on high-load days; it will cause the air 
conditioning load level to be much higher because of the inefficiency of operation at 87% 
voltage. 
 
Because there are no time limits or frequency limits this standard is effectively meaningless. 
During a hot afternoon, when the system is under stress, voltages may well be expected to be in 
range B for several hours because prompt corrective action does not have to be taken until the 
voltage goes beyond the range B limit [11]  
 
Reference [12] also gives a minimum utilization voltage of 208 V (Range B) for an equipment 
voltage rating of 230 V or 208/230 V. The standard states 
 

It must be recognized that, because of conditions beyond the control of the 
supplier or user, or both, there will be infrequent and limited periods when 
sustained voltages outside of Range B limits will occur.  Utilization equipment 
may not operate satisfactorily under these conditions, and protective devices may 
operate to protect the equipment. 

 
The compelling conclusion here is that existing utility voltage range standards are ambiguous, 
the time the voltage can be in an abnormal range (Range B) is not defined, and the time the 
voltage can go beyond the abnormal range (outside of Range B) is not defined. Likewise, the 
standard for air-conditioning equipment simply quotes the power system standard and says that 
the equipment may not work and protective devices may operate, but it specifies no clear time 
ranges. This lack of specificity in the standard certainly contributes to operational problems both 
in the power system and in air-conditioning equipment. As it is now, A/C units do not shut down 
the motor stall until the thermal switch is activated when the motor reaches the set-point 
temperature designed to prevent damage from motor overheating. There is no over/undervoltage 
relay to trip out the A/C unit based on a voltage above Range B or lower than Range B. 

5.2 Regulating Local Voltage to Improve Efficiency 
Tests by manufacturers have shown that compressor motor efficiency drops off more quickly 
when the motor is operated at reduced voltage, such as 187 V, during heavily loaded conditions 
[3]. At lightly loaded conditions, efficiency is actually better at a reduced voltage of 187 V. This 
is not unusual for induction motors. They typically have a higher efficiency at low voltage when 
operated with a light load but at a heavy load, they require a higher voltage to maintain 

 



Local Dynamic Reactive Power for Correction of 
System Voltage Problems 

 ORNL/TM-2008/174 

 

~16 ~

                                                

efficiency. Test data shown in reference [5] indicate that at standard operational conditions, 
efficiency could actually be improved by 5% by raising the voltage from 187 to 230 V. Precise 
voltage control depending on load is something that can be accomplished with adjustable speed 
drives, but has seldom been practiced on utility distribution systemsf. Previous studies have 
focused on how voltage reduction can improve energy efficiency, which depends on the makeup 
of loads in the system.  With loads that are primarily resistance, voltage reduction does reduce 
the energy consumption of the loads—for example, by 0.65% for every 1% reduction in 
voltage—and thus gives the appearance of energy efficiency improvement. In fact, during 
periods of heavy load, voltage is usually depressed, not elevated. It is an unusual concept, 
though, to increase voltage during periods of heavy load (i.e., hot weather) to improve motor 
load and distribution system efficiency. This is something that could be done with local voltage 
regulation. This practice not only would improve efficiency but also would reduce transmission 
congestion and improve the margin-to-voltage collapse. 
 
Reference [11] also gives a minimum utilization voltage of 208 V.  Similar to the ANSI standard, 
for this Range B voltage, the utility is to take corrective measures within a reasonable time to 
improve voltages to meet Range A requirements. 

6 COMMONLY SUGGESTED VOLTAGE SOLUTIONS AND THEIR 
DRAWBACKS 

6.1 More definitive voltage standard 
A more definitive voltage standard is needed to specify the upper/lower limits and time duration 
for normal and abnormal (beyond normal) voltages for air-conditioning equipment.  A voltage 
standard that includes maximum times of low-voltage operation would allow manufacturers to 
design equipment capable of reliable operation under expected abnormal conditions, for the 
duration of the condition. The standard would also allow manufacturers to design equipment that 
trips off during expected transients, instead of stalling and relying on the thermal relay to trip the 
unit. The drawback is that today’s distribution systems are not designed to provide such tight 
voltage regulation.  The voltage limits have been set by standards, but the definition of 
acceptable durations and frequencies would be essentially impossible because of the range of 
distribution system types, operation methods and stress factors across the nation. 

6.2 Undervoltage tripping of air­conditioners 
Another solution is to incorporate an undervoltage trip capability in new and retrofitted 
existing A/C units. A specified undervoltage which would cause the A/C to trip would not be 
difficult to implement, especially if manufacturers have information on when the motor will stall. 
(Reference [5] discusses an issue involving stalled air conditioner motors as the root cause of 
delayed voltage recovery. It suggests that air-conditioning units should be equipped with an 
undervoltage relay and time-delay recloser.) A trip capability would provide a significant 
advantage to the utility by removing stalled motors from the system, and the trip would protect 
the motor and enhance motor lifetime by greatly reducing operation in a stalled condition. The 

 
f “Distribution Efficiency Initiative, http://www.nwalliance.org/ourwork/projectsummary.aspx?ID=75. 
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recloser would ensure that the unit stays out long enough for the low-voltage condition to pass; it 
also could ensure that there is diversity in how the A/C units reconnect to the power system to 
prevent both a sudden inrush by multiple units and a significant drop in voltage as the A/C 
motors restart. The drawback is that the undervoltage trip must occur quickly.  A/C motors have 
been found in tests to stall in as little as three cycles. Conventional undervoltage devices may not 
act quickly enough to prevent motor stall.  They would also be expensive to add. 

6.3 Local voltage regulation 
Local voltage regulation, which refers to the ability of the end-user to meet a schedule supplied 
by the utility, is another possible solution. If the customer were equipped with DER that could 
dynamically supply reactive power to regulate voltage, local voltage could be regulated to hold it 
in a band that meets the design B voltage specification. As an option to maximize efficiency, 
local voltage could be controlled to a level that would provide the best A/C efficiency based on 
temperature. This approach would also increase the margin-to-voltage collapse and improve grid 
and distribution system efficiency. The challenge is that only a few progressive utilities are 
presently interested in having customers provide local voltage regulation in accordance with a 
schedule, but we anticipate that this will change in the future.  Another drawback is that the 
resource must have adequate capacity.  In the future, we anticipate that inverters such as those 
used in PV systems may be supplied with a larger VA capacity so they can provide reactive 
power from DE systems. 

6.4 Fast tripping of A/C motors 
Use of a fast trip device to trip stalled loads to prevent voltage collapse is another approach.  
Recently, there has been some discussion on modifying the air- conditioning manufacturer 
standard (Air-Conditioning, Heating and Refrigeration Institute) to include a requirement that the 
unit trip immediately on stall rather than waiting 2 or 3 minutes for a TO to trip.  

6.5 Faster fault clearing 
Longer fault duration of 0.5 to 2.5 s in duration would extend the stalling to many more motors. 
When fault clearing was improved to eight cycles (0.13 s), most of the voltages in a simulation 
recovered in 10 s, and several cases showed immediate recovery [2]. 

7 CHALLENGES TO LOCAL VOLTAGE REGULATION 
It is critical to maintain an acceptable voltage range at distribution substations (where the voltage 
is stepped down from subtransmission level to distribution level) in order to provide acceptable 
voltages to end-user loads on distribution feeders and circuits. Voltage regulation via central 
generator plants and the use of voltage regulation, such as load-tap-changing (LTCs) and 
capacitors, in the substations ensures this requirement will be met. Distribution engineers 
dispatch capacitor banks at distribution substations through manual operation or remotely 
controlled devices. Also, fixed and switchable (e.g., controlled by voltage) capacitor banks and 
line voltage regulators are used along distribution feeders to provide additional capability to 
ensure that the end-user loads at the end of distribution feeders receive acceptable voltage. 
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With more penetration of DER, the voltage of a distribution substation may be regulated with DE 
embedded in the demand side rather than the centralized capacitor banks at the distribution 
substation. In fact, the cost of maintenance and operation of capacitor banks is a significant 
burden to utilities. In addition, capacitors are least effective when needed the most—at low 
voltages—since their reactive power capability drops off by voltage squared. 
 
Figure 7-1 shows an example of a typical distribution system with DERs. A transmission 
substation is connected to a distribution substation which feeds a main feeder and a few 
secondary feeders. Loads are connected to the feeders at various locations.  

 

 

DE helps to regulate 
distribution voltage  

Regulate 
Local Voltage

DE helps to regulate 
distribution voltage 
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Distribution 
Substation 
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Bldg2 DE2 

Bldg 
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Regulate 
Local Voltage 

 
Figure 7-1. An illustrative diagram of a sample distribution system. 

 
However, challenges arise when DE is placed in a distribution network. In particular, the control 
parameters, namely KP (proportional gain) and KI, (integral gain) for the proportional integral 
(PI)g controllers in Figure 7-1, remain an unsolved issue. (This controller is discussed at length 
in Section 8.2) In previous research, KP and KI are obtained by a trial-and-error approach for a 
specific system. When DE and the associated PI controllers are eventually deployed in large 
numbers and amount in a distribution network, it is not possible to set the parameters by trial and 
error because of the large combination of variables. However, if the parameters are not well 
chosen, problems of sluggish response or overshoot or instability may occur. 
 
This can be verified with the simulation results. In the simulation, the impact of KP and KI on the 
dynamic response of the voltage regulation was tested in a distribution system with one and two 
DERs, respectively. 
 
The system diagram is shown in Figure 7-2. 
 

                                                 
g We assume PI feedback controllers in our discussion, since this has been the focus of our control for local voltage 
regulation with DE. 
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demonstrated by comparing Figure 7-3(c) with Figure 7-4(b1) and Figure 7-4(b2). Even with the 

1 2 3 4 5

INVERTER 2 CONTROLLERINVERTER 1CONTROLLER 

DER DER

Substation
bus 

1 2 3 4 5

 
 

Figure 7-2. Single line diagram of the distribution system with DE. 
 
 It is a typical radial distribution network (12kV at the system level and 480V at end-user level) 
with two DERs with a PE interface connected at bus 2 and bus 5, respectively.  The loads 
connected at buses 3, 4, and 5 are rated at 10.41 kVA, 170.77 kVAand 128kVA, respectively.  
The circuit is a close representation of one of the ORNL circuits connected at the DECC Lab 
(see Section 10). It has been extended to include the third load connected at bus 5 and the second 
DER. In the following two test cases, the first omitted the DER at bus 5 to have a single DER 
case, while the second case has both DERs in service. 

7.1 Case of a single DER 
The first case is the system shown in Figure 7-2 with only one DE at bus 2.  The PE controller 
was tested with different combinations of the control parameters, Kp and KI. The different 
responses are shown in Figure 7-3. The straight green line is the reference voltage, and the blue 
curve is the voltage at the point of common coupling (PCC). The PCC voltage was 263V before 
regulation and the reference voltage is set at 268 V for regulation. From 0 to 0.3 s, there is no 
regulation; from 0.3s to 1.5s, compensation is performed by the DE to regulate the voltage. 
 
As shown in Figure 7-3, there is a stable range of Kp and Ki; Figure 7-3(a) shows a desirable 
dynamic response with well-designed KP, Ki. When the control parameters are outside this 
range, the system becomes unstable, as is shown in Figure 7-3(b). Even in the stable range, 
inappropriate values for Kp and Ki may cause an undesired response; that is the compensation 
speed is too slow as a result of a value of KI value that is too small, as in Figure 7-3(d), or an 
overshoot and oscillation at the start as shown in Figure 7-3(c). 

7.2 Case with two DEs  
Next, the distribution system with two DER was tested with different combinations of Kp and KI. 
The test results are shown in Figure 7-4. The left side plots show the voltage response at bus 2 
with respect to different Kp and KI; the right side plots show the voltage at bus 5. Prior to 0.3s, 
there is no regulation; from 0.3s to 1.5s, the compensation is performed by the DERs to regulate 
voltage. Figure 7-4(a1) and (a2) show the desired response; Figure 7-4(b1) and (b2) show an 
unstable response; and Figure 7-4(c1) and (c2) show a slow response. In a similar manner to the 
single DER case, the values of KP and KI determine the response of the voltage regulation. 
However, in this case, with multiple DER, the range of KP and KI are different, which is clearly 
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same value of KP and KI, the two-DER case is unstable while the one-DER case is stable. It 
suggests that the parameter range suited for a single DE case may not be directly used for voltage 
regulation with multiple DER. In order for them to work correctly together requires a 
coordinated design of the controller parameters for the multiple DER. 
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(a) Kp=0.03 & Ki=0.8 

 

0.3 0.6 0.9 1.2 1.5
260
261
262
263
264
265
266
267
268
269
270

time(s)

vo
lta

ge
(v

)

 
(b) Kp=1.0 & Ki=7.0 

0.3 0.6 0.9 1.2 1.5
260
261
262
263
264
265
266
267
268
269
270

time(s)

vo
lta

ge
(v

)

 
(c) Kp=0.2 & Ki=3.0 
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(d) Kp=0.01 & Ki=0.1 

  
Figure 7-3. Voltage regulation with  one DE case. 

 

ore results about the impact of DER location and loading condition on the voltage regulation 

hese simulation results in Figure 7-3 and Figure 7-4, as well as more studies in reference [13], 

o address the parameter setting issue, a control scheme based on centralized communication 

 different Kp, Ki —

 
M
response can be found in reference 13. 
 
T
clearly indicate the need to find a solution to identify the desired control parameters in real time 
in accordance with the system condition and the location. If the control paramerters are not 
appropriately chosen, the system response may be too slow to be efficient or too fast to be stable. 
 
T
may be possible such that the DER knows the need at the substation level and then adjusts its 
own settings. That is, data from the distribution substation must be forwarded to each DER. 
Because of the uncertain and dispersed location of customers’ DE, this centralized 
communication may be costly. Therefore, it is desirable to identify an alternative, decentralized 
approach to regulate the distribution substation without a communication system. This research 
report presents an adaptive method to regulate local voltage by DE that is connected to regulate 
the voltage of the distribution substation by following a voltage schedule.  The adaptive method 
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Bus 2 Bus 5 

is described in Section 8. 
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(a1) Voltage at bus 2 when Kp1=Kp2=0.01, 
Ki1=Ki2=0.8. 
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(a2) Voltage at bus 5 when Kp1=Kp2=0.01, 
Ki1=Ki2=0.8. 
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(b1) Voltage at bus 2 when Kp1=Kp2=0.2, 
Ki1=Ki2=3. 
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(b2) Voltage at bus 5 when Kp1=Kp2=0.2, 
Ki1=Ki2=3. 
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(c1) Voltage at bus 2 when Kp1=Kp2=0.01, 
Ki1=Ki2=0.05. 
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(c2)  Voltage at bus 5 when 
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Figure 7-4. Voltage regulation with different KP, KI-two DEs case. 
 

8 THE LOCAL DYNAMIC REACTIVE RESOURCE SOLUTION 

ere we present a solution using DE to dynamically regulate local voltage near or at the end-user 

Kp1=Kp2=0.01, Ki1=Ki2=0.05

 
H
load. 
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8.1 Local dynamic reactive resources 
Changing the transformer taps and switching capacitor banks on and off are the two traditional 
means of local voltage regulation. By adjusting the transformer taps, the transformer turns ratio 
is increased or decreased to regulate the secondary output voltage. The capability for voltage 
regulation by transformers is usually within ±5% of the rated voltage. This is the most widely 
used voltage regulation method in power systems, and no additional equipment is required 
except transformers with tap-changing capability. The drawback of this method is that the tap 
changing is not continuous, and does not respond to dynamic voltage variation. If the voltage is 
regulated at a wider range, the installation of capacitor banks is the other traditional and widely-
used method. The voltage regulation effect of the capacitor banks is not continuous because a 
certain number of the capacitor banks are switched on or off each time. The two traditional 
means of local voltage regulation have some common characteristics. The capital costs are 
relatively inexpensive, but the maintenance costs are substantial. Capacitor switching causes a 
transient in system voltage, which may have a negative impact on sensitive loads. They cannot 
control the voltage continuously and they do not have dynamic capability to respond to rapid 
voltage variations and transients. 
 
Because of the demand for high-quality power, local voltage regulation methods with real-time 
voltage control capability and fast transient response are playing a more and more important role 
in the distribution level. The SVC, static synchronous compensator (STATCOM), SC, and DER 
are some of the devices in the distribution level that have proven capable of performing local 
dynamic voltage regulation. They either readily have, or have the potential to provide, dynamic 
reactive power. 
 
A typical SVC comprises a thyristor-controlled reactor and a capacitor bank or banks in which 
each capacitor can be switched on or off individually. The thyristor can automatically and 
continuously control the current through the reactor. The combination of controlling the thyristor 
and switching the capacitor bank can provide dynamic reactive power. The output of the SVC is 
dependent on the system voltage; therefore, when the system voltage drops—i.e., when the 
reactive power is mostly needed—the SVC’s maximum output reactive power decreases with the 
square of the voltage. 
 
A STATCOM is a voltage source converter connected in parallel to the power system to control 
power flow and improve the transient stability of the power system. The STATCOM uses 
forced-commutated power electronics devices to generate an ac voltage from a dc voltage source. 
A capacitor is connected on the dc side of the STATCOM as the voltage source because only 
reactive power is generated or absorbed by the STATCOM and no energy source is needed. The 
voltage output of a STATCOM is independent of the system voltage, which is an advantage to 
reactive power sources as the maximum reactive capacity drops only linearly with voltage. It has 
fast transient control capability and can improve voltage stability. However, it is more expensive 
than other reactive power sources. 
 
There are more and more DER in distribution systems working as active power sources. There 
are several types of DER: micro-turbines, industrial gas turbines, fuel cells, reciprocating engine 
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generators, PVs, wind turbinesh, etc. Most of them are operated as active power sources, but they 
have great potential for local voltage regulation by generating or absorbing reactive power for 
two reasons. First, a power-electronics-based interface is required for most DE. By modifying 
the control scheme, the interface not only can transfer the active power from the DE to the utility 
but also can control the reactive power flow between the DE system and the utility. Second, the 
distributed location of DER is ideally suited for voltage regulation. 

8.2 The basic idea of adaptive voltage control 
Feedback control is used in most dynamic reactive resources, including SVC, STATCOM, and 
DE. Feedback control compares the differences (errors) between the actual values of the system 
variables (controlled variables) and the desired values (references) and uses the error to 
determine and send control signals to the controlled system. In a robust and stable feedback 
control system, the controlled variables track the references at steady state and reach the value of 
the references after a desired period of time during a transient. The time to respond to a transient 
is exponential, and normally the steady-state condition is reached after five time constants. 
 
A proportional-integral-derivative (PID) controller is a widely used feedback controller. There 
are three parts of the controller: (1) the proportional part that determines the reaction to the 
present error between the reference and actual value, (2) the integral part that determines the 
reaction to the sum of the recent error, and (3) the derivative part that determines the reaction to 
the rate at which the error has been changing. A PI controller is the most commonly used 
feedback controller in which the derivative part is dropped because it is very sensitive to 
measurement noise. In the design of a PI controller, the proportional gain (Kp) and the integral 
gain (Ki) are the two control constants determined by the system (to be controlled) characteristics 
and the control strategy. 
 
In a PI controller, inappropriate choices of the control gain constants (Kp and Ki) can result in 
unsatisfactory performance of the controlled system (such as when Kp and Ki are too low), 
system oscillation (when one of the gains is too high), or even system instability (Kp and Ki are 
too high). System oscillation or instability must be avoided by selecting appropriate control gain 
constants.  If all the system parameters are known, Kp and Ki can be determined by setting up the 
mathematical model of the system and the controller. 
 
However, in a complicated system like an electric power system, there is often a lack of 
complete information for the system parameters and the system configuration. The power system 
also is quite dynamic, with varying loads, generation, and even network configuration making it 
difficult to model dynamically. An adaptive control method can adjust the Kp and Ki in real-time 
so that the system response meets these requirements. 
 
In an adaptive PI controller, the values of Kp and Ki are adjusted in real-time based on the 
system behavior. In a non-adaptive PI controller, the values of Kp and Ki are preset and are fixed 
so that they are not adjusted throughout a control process.  However, when there is lack of 
system information, a calculation such as this cannot be fulfilled so “trial and error” adjustment 

                                                 
h We are referring to wind turbines that have been placed near end-user loads although wind turbines are usually 
grouped together to create wind farms.  
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of the control gains and watching the response is usually the solution to this situation. It is 
difficult to choose the appropriate values of Kp and Ki so that the controller’s performanc
o
 
In an ideal PI control process, the response of the control system to a step change is an 
exponential decay curve with the largest error at the beginning of the step change and the actual 
variable approaching the reference. By adjusting the values of Kp and Ki, the time constant of 
this exponential curve is changed; i.e., the speed of the response is changed. The voltage 
response time for the DE should be so quick that it will not interfere with conventional utility 
voltage control. A response time of 0.5 s (equivalent to 30 cycles at 60 Hz) was selected because 
it should be “invisible” to utility voltage control.  Because 30 cycles is considered by utilities as 
appropriate response time for devices interconnected in the utility grid, it is used in the adaptive 
control as the 5τ decay time of the ideal exponential curve. By adjusting the values of Kp and Ki  
so that the error of the controller tra
v
 
A typical configuration of a utility-connected DE syst
F

 

Figure 8-1. Utility-connected DE with controller. 
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Figure 8-2. Controller diagram. 
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T
voltage and then use the instantaneous difference and the accumulated difference as feedback 
signals to eventually change the controlled voltage to the reference voltage. The parameter to 
scale the instantaneous voltage difference is Kp, and the parameter to scale the accumulated 
voltage difference is Ki. This can be specifically expressed in Eq. (8-1): 
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As previously discussed, if Kp and Ki are not chosen well, the desired response may not be 
obtained. This is true for a common PI controller design in which Kp and Ki are fixed values. 
Without a communication system, the controller must include some self-learning capability to 
adjust the Kp and Ki parameters dynamically.
n
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Figure 8-3 Desired response and actual response of the controller. 
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Figure 8-4. Adaptive controller diagram. 
 

8.3 Parameter selection approach 
This section presents guidelines for selecting the various parameters for the control approach. 

8.3.1 Determine Vdc 

Vdc is the dc supply voltage that determines the capability of the DER for the voltage regulation. 
It should be determined before the design of the control.  To keep the pulse-width modulation 
(PWM) index less than or equal to 1, the peak of Vc should not exceed half of the dc voltage, i.e., 

dc
peak

c VV
2
1

< . Vc is the voltage that the DER should supply to keep Vt, the voltage at the PCC, at 

a desirable value in the post-disturbance state in the worst cases, which cause the largest voltage 
drop at the PCC. Since the probable load variation, voltage schedule, network parameters are 
known, calculation of the final state Vc is a steady-state power flow problem. 

8.3.2 Determine the initial value of Kp 

Based on the previous simulation, if Kp is too big, it will cause oscillation, instability, and a high 
percentage of harmonics, which deteriorate the regulation results. Therefore, the initial value of 
Kp is chosen conservatively. At the time 0+ moment, the integral (Ki) part contributes nothing, so 
the PI controller output is  to keep the PWM index no bigger than 1.  This 
yields 
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8.3.3 Determine the initial value of Ki 

The desirable response time of the controller when a voltage change occurs is 0.5 s to provide 
sufficient time not to interfere with conventional voltage control implemented by the utility. As 
can be seen from the simulations, if Kp and Ki are chosen appropriately, the voltage response 
curve has the exponential decay characteristic. So it is reasonable to approximate the ideal 
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response with the exponential decay function, i.e. τ
t

t eVtV
−

Δ=Δ 0)( . Hereτ has a relationship with 
response time s5.05 ≈τ , five time constants since this is normally what is required to reach a 
new steady-state condition. When the steady-state is reached, the proportional (Ki) part 
contributes almost nothing and the following relationship is obtained: 
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Here, 
statesteadyt

c

V
V

−

is a steady-state value and can be calculated for the worst case situation. 0tVΔ  

is the acceptable maximum voltage variation. 
 

8.3.4 Adaptively adjust the value of Kp and Ki 

The initial value of Kp and Ki is conservative and cannot reach the desirable 0.5 s 
response time. Adaptive adjustment of Kp and Ki method is used to improve the response speed. 

The ideal response τ
t

t eVtV
−

Δ=Δ 0)(  is used as the reference. Every 0.1 s, the actual voltage error 

and the ideal voltage error are compared and the ratio
errorvoltageideal
errorvoltageactual is calculated. If the 

ratio is greater than 1, Kp and Ki will be multiplied by the ratio. If the ratio is less than 1/3, which 
means the actual response is much faster than desired, Kp and Ki will be reduced by 20%. 

8.4 An example of parameter selection 
 
The test system is shown below in Figure 8-5. (It is the same as the system shown in Figure 7-2. 
shown here again for easy reference.) 
 
First, a single DER case is considered. It is placed at bus 5. The line voltage at the bus station is 
480 V. Consider the heaviest load condition and calculate the initial phase voltage (without the 
support of the DER), which is 230.97 V. 
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1 21 2 3 4

 
Figure 8-5. Studied radial distribution system. 

 
1. Calculate Vdc 
Assume that in the heaviest load condition, the desired voltage profile at bus 5 is 236 V. 
Applying system reduction, gives 
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Vc can be calculated, which is 279.1 V in this case. VVV cdc 80022 ≈= . 
 
2. Determine initial Kp by using the following equation: 
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3. Determine initial Ki by using the following equation: 
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Note that for the case with multiple DERs (such as N DEs), the initial Kp and Ki for each 
individual DER shall be simply divided by N. As the adaptive control logic will adjust the 
parameter dynamically in real time, this simple estimation of the initial Kp and Ki provides a 
close solution. 
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S 
 

ntrol 

T  system is based on the system shown in Figure 8-5. In this case, only one DER is 
placed at bus 5. The line voltage at bus station is 480 V. Consider the heaviest load condition and 

age (without the support of the DER), which is 230.97 V. 

 
s, 0.6 s, 

Ki will be increased to track the ideal response. It can be observed that the 

 
tive. 

tively. We can calculate the initial Kp 
and i for DER1 at bus 2, assuming it is a single-DER case, which are 0.06 and 0.5, respectively. 

the initial value of Kp and Ki can be simply set to be half of the 

igure
 

2 are increased at 0.4s and 0.5s. Also shown is that the actual 
sponse 

9 ADAPTIVE VOLTAGE REGULATION METHOD AND SIMULATION 
RESULT

In this section, we describe the results of implementing the adaptive voltage regulation co
of Section 8. 

9.1 Single DER case 
he simulation

calculate the initial phase volt
 
Figure 9-1 shows voltage regulation with adaptive adjustment  of Kp and Ki. The ideal response 
is shown in green and the actual in blue. The response satisfies the 0.5 s response time 
requirement. 
 
Figure 9-2 shows a comparison of the ideal voltage error and the actual voltage error. After a big
voltage variation, the difference of the two voltages will be checked every 0.1 s. At 0.5 
and 0.7 s, Kp and 
actual voltage response attempts to follow the desired voltage response, as Figure 9-2 shows the 
voltage errors both decrease and converge with time. 
 
Figure 9-3 shows voltage regulation with the initial Kp and Ki without any adaptive adjustment. 
The response time to reach the reference voltage is 1 s, longer than the desired 0.5 s. This also
means that the initial values of Kp and Ki are conserva

9.2  Two DERs Case 
In this case, two DERs are placed at bus 2 and bus 5, respec

K
When both DER are online, 
value in the single-DER case. 
 
Figure 9-4 and Figure 9-6 show the voltage regulation with adaptive adjustment of Kp and Ki at 
bus 2 and bus 5, respectively. 
 
F  9-5 and Figure 9-7 show a comparison of the ideal voltage error and the actual voltage 
error at bus 2 and bus 5, respectively. As these diagrams show, Kp and Ki of DER1 are reduced
at 0.3s; and Kp and Ki of DER
re curve at each bus consistently attempts to follow the desired voltage response curve. 
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Figure 9-1. Voltage regulation with adaptive adjustment of Kp and Ki. 
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Figure 9-2. Comparing ideal voltage error and the actual voltage error. 
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Figure 9-3. Voltage regulation with initial Kp and Ki. 
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Figure 9-4. Voltage regulation with adaptive adjustment of Kp and Ki at bus 2 
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Figure 9-5. Comparing ideal voltage error and the actual voltage error at bus 2. 
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Figure 9-6. Voltage regulation with adaptive adjustment of Kp and Ki at bus 5. 

 
 

Figure 9-7. Comparing ideal voltage error and the actual voltage error at bus 5. 
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10 TESTING AT DECC AND RESULTS 
The DECC Laboratory, its capabilities, and the results of our testing of dynamic voltage 
regulation with DE is described in this section. We completed development of control methods 
for both our DE mockup systems (an SC using an overexcited synchronous motor with 6.6kW dc 
power supply and a programmable inverter with a 800Vdc power supply). The controls that use 
PI -integral feedback control were developed using the non-active instantaneous power theory 
developed at the University of Tennessee by Dr. Yan Xu, et. al. [14]. A test matrix describing 
the overall category of tests conducted with DE at the DECC Lab is provided in Table 10-1. The 
test matrix considers a number of operational test scenarios for evaluating dynamic DE control 
algorithms. These scenarios involve (1) balanced/unbalanced voltage conditions (i.e., sags), (2) 
various dynamic load conditions (i.e., motor starts), (3) changing load conditions (i.e., step load 
changes), (4) severe abnormal conditions (i.e., fault conditions), and (5) changing voltage 
schedules for the DE. Based on the results of these tests, general engineering guidelines or rules 
of thumb will be developed along with a control methodology framework that will provide a 
streamlined engineering approach for utilities to implement various ancillary services using 
DER. 
 

Table 10-1. DECC Test Matrix* 
 SC Inv SC+inv Inv+MTG SC+MTG SC+inv+MTG 
Temperature/current 
rating 

 x     

Voltage regulation x x x X X x 
Unbalanced voltage  x x X  x 
Fault clearing  x  X  x 
Circuit reconfiguration x x x X X X 
*SC – synchronous condenser, inv – inverter and MTG – micro-turbine. Testing that has been 
conducted is indicated by x. 

 
Temperature/current rating of inverter. The inverters had to be characterized with regard to 
maximum current output based on cooling capability. The inverters operate at high power 
(800Vdc/480Vac) as well as high switching frequency, which drives up the inverter operating 
temperature. We have found that our 150 A inverter can operate at a continuous level of 54.4 
Arms (77 Apeak) or lower without exceeding the temperature region of 77°C at the heat sink, 
which equates to 100°C or lessi at the inverter’s IGBT junctions.  However, the inverter is 
capable of operating at its maximum current output of 150 A for several cycles to minutes.  We 
have placed temperature measuring instrumentation on the inverter’s heat sink near the IGBT 
junctions to monitor the temperature as we operate the inverter during our testing.  We initially 
characterized the maximum continuous current output by loading up the inverter with our local 
load banks until the maximum temperature of 77°C was reached and stabilized. 
 
Voltage regulation. Our primary focus has been on evaluating methods for local voltage 
regulation with the modulation of reactive power output from DE. We have been using a PI-
controller based on instantaneous non-active power theory.  We are implementing the control 
with our SC and inverter that are connected to the ORNL distribution system. The goal is to 
                                                 
iThe danger zone for IGBT junction operating temperature is the range of 100 to 120°C.  At 120°C, it can fail; above 
100°C, it can start to degrade. The IGBT junction will operate at 20 to 30°C higher than the heat sink surface. Thus 
setting the upper temperature criterion at 77°C for the heat sink ensures a comfortable margin of 20°C. 
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maintain voltage regulation for balanced as well as slightly unbalanced phase voltages and for 
both steady state and transients. We want to achieve fast response without creating local voltage 
instability in the form of oscillations or overshoot. We have the flexibility to test the SC and 
inverter connected on separate circuits or reconfigured to have the same substation feed. Also, 
we have a conventional 30 kW micro-turbine, without power factor control, that can be operated 
with the SC and inverter. Finally, we have the ability to relax the taps at our local distribution 
transformers feeding the power panels and the reactive power compensation at the local 
substation (900 kVar with 150 kVar increments) to worsen the voltage profile for testing. In 
regard to transients, we will evaluate the response of the control to voltage shifts due to the PI 
control reference reset, motor start, load bank setting changes, and/or to disconnection of 
capacitors at the local substation. The specific tests include (1) testing of the SC and inverter in 
parallel and (2) testing of the SC, inverter and microturbine together. 
 
Unbalanced voltage. Voltage imbalance is very bad for three-phase motor operation. Motors 
must be de-rated when operated with voltage unbalance per NEMA MG-1. The maximum 
allowed continuous voltage unbalance according to NEMA MG1 is 5%. Initially, we have 
slightly unbalanced phase voltages feeding the inverter panel, so we use our controls to correct 
this imbalance. Later, we use the starting of a single-phased (one phase lead open) three-phase 
motor to evaluate our controls for balancing the voltage using the inverter. The initial motor that 
we use for the testing is 7.5hp and it can draw ~80 A on two phases for over 2 s. We control the 
inverter to correct the unbalance up to the inverter’s current limit and the SC to restore the 
average voltage to match the control reference voltage. 
 
Fault clearing. Our focus for fault clearing has been to evaluate (1) how quickly the inverter 
with our controls can trip with nearby fault-like condition and (2) how well our controls can limit 
the inverter and SC current when there is a nearby fault condition. In the former case, we want 
the inverter to protect itself and thus trip when the fault is extremely close to prevent any damage 
to the inverter and prevent it from feeding the fault. However, in the latter case, we want the 
inverter and SC to continue to support the sagged voltage due to the fault but without exceeding 
its rated current output.  We use several sizes of three-phase motors to produce 
severe/unbalanced voltage sags for several cycles similar to that due to a fault.  We were able to 
test the nearby fault for the inverter with the startup of a 250 hp synchronous motor and with 
induction motors, single-phased, so that they can not start.  The purpose of these tests has been to 
evaluate how the inverter and SC can support system-wide voltage sags associated with 
subtransmission faults or faults on neighboring distribution circuits without the DE providing 
current beyond its capability.  The specific tests include (1) see how the slower response of the 
SC works with a transient event such as a fault, (2) see how the inverter responds to a mild 
transient (i.e., startup of a small motor) and to an extreme transient (i.e., startup of a large motor), 
and (3) verify that the conventional microturbine does not respond to voltage. 
 
Circuit reconfiguration. Our focus here is to evaluate the impact of varying the electrical 
distance among the DER or between the DER and the substation. We are interested in the impact 
of varying the electrical distance on the performance of the PI controls that we are using for the 
dynamic voltage regulation. We are testing this by reconfiguring the two circuits to which the SC 
and inverter are connected so that they are in series (having the same single-source feed from the 
substation) rather than in parallel (having separate source feeds from the substation). By using a 
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normally open tie switch that connects the two circuits, we can reconfigure the circuits so that 
both the SC and inverter are electrically closer together than in the normal circuit configuration. 
Two different reconfigurations can be used for the testing, depending on which of the two 
circuits provides the single feed (one circuit switch at the substation is open while the other 
circuit switch is closed). The voltage regulation control methods were tested with the SC and 
inverter in series. 

10.1 DECC Laboratory 
ORNL developed the DECC Lab (Figure 10-1) for studying dynamic voltage and power factor 
control supplied from DER. This unique laboratory currently has installed both rotating and 
inverter-based technologies. 
 

 
 

Figure 10-1. Inverter, synchronous condenser, and microturbine 
generator tested simultaneously. 

 
At present, equipment at DECC consists of three DE devices: a 300-kVar SC, a 150 A (or 125 
kVA) inverter, and a 30 kW microturbine generator. There is also a 100 kW microturbine with 
heat recovery at the DECC Lab that is connected to the distribution network; it is hoped it will be 
operational early in FY 2009. Figure 10-2 shows the one-line electrical diagram of the DECC 
Lab and its connection to the ORNL distribution system. ORNL owns and operates its own 
electric distribution utility for the Laboratory campus and can configure the distribution system 
to provide optimum opportunities for testing of non-active power (including reactive power) 
injection benefits and impacts from rotating and inverter-based DE. Real-time monitoring and 
programmable controls are available at the end-user laboratory level for testing and developing 
local controls for DE. There is also a real-time monitoring system for the overall distribution 
system via the PowerNet® System, and power meters are located at all of the ORNL substations. 
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A complete hierarchy of power distribution system testing, such as load changes, startup of 
dynamic loads, and feeder reconfiguration, is offered by the DECC Lab via its equipment and 
linkage with the ORNL distribution system, which ties in with the Tennessee Valley Authority 
(TVA) bulk system. 
 

 
Figure 10-2. Electrical configuration (diagram) of the DECC laboratory and equipment. 

 
The SC, which is an overexcited synchronous motor, is capable of providing up to 300 kVar of 
reactive power injection. It is on its own 480V panel connected to circuit #4 of the ORNL 
distribution system. The 30 kW microturbine generator is on another panel but on the same 
circuit. We are currently working with a 150 A (125kVar) inverter which is on its own 480 V 
panel connected to circuit 2 of the ORNL distribution system. We also have two other inverter 
sizes available for testing, 75 A and 300 A. All three DE devices are connected to the same 
substation, ORNL’s 3000 substation. ORNL is a direct distributor from the TVA 161kV 
backbone transmission system. 
 
In addition to the DE systems at DECC, ORNL has two load banks for varying the local load.  
There is a 500 kW resistive load bank with 1 kW step change capability and a 375 kVar reactive 
load bank with 3.75 kVar step change capability. The load banks are connected to the same 
power panel as the inverter. Currently, there are no load banks connected to the SC power panel, 
as shown in Figure 10-2; plans are to add one in FY 2009. In addition to the load banks for 
varying local load, we have an induction motor (a range of motors from 7.5 to 75 hp are 
available) connected to the inverter panel and a 250 hp synchronous motor connected to the SC 
panel to provide dynamic loads. 
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A feedback control system is used to adjust the reactive power output from the SC and inverter 
based on the measured end-user voltage at their power panels. The control algorithm compares 
the measured values against a desired reference or target and adjusts the output of the DE device 
based on the error between them. The dynamic control of local voltage is important for 
improving power quality to local and nearby loads and improving line losses because the 
injection of reactive power offsets the demand by local loads, reducing the delivery current from 
the utility. Conventionally, shunt feeder capacitors and line regulators are used to control 
distribution voltages, but they are slow and are not continuous (fixed step sizes).  Also, reactive 
power from capacitor banks drops off with the square of the voltage, so they provide diminishing 
value at low voltage when they are most needed. Further, capacitor switching can cause 
transients on the distribution network; in the worst cases, they can cause magnified voltages 
when the capacitance and inductance of the network are matched. DE with the ability to absorb 
or inject reactive power can also improve the voltage stability of the power grid by providing 
reactive power during system stress, i.e., when there is a shortfall or transport limitations on 
reactive power delivery from central generators and on major transmission lines. 
 
Local controls have been designed using Matlab/Simulink and dSpace software and hardware to 
operate both the SC and the inverter to provide voltage regulation locally and dynamically. The 
SC and inverter operate as reactive power generators or sinks depending upon the voltage 
needed: they generate reactive power to boost voltage when voltage is low and absorb reactive 
power to lower voltage when it is too high. The current 30 kW micro-turbine connected at the 
DECC Lab uses conventional controls and is designed to operate only when grid voltage is 
present and within specified limits and to provide active power locally or to the grid.  It is 
operated at unity power factor and does not perform any voltage regulation or power factor 
correction support of any kind. A second micro-turbine, a 100 kW Elliott unit, has also been 
installed and it is expected to be operational by early FY 2009. This second microturbine will 
provide a DER that has some limited capability to produce leading or lagging reactive power 
(Vars). 
 
The two DE devices, SC and inverter, can be controlled autonomously, a unique arrangement 
that involves no central communication and control or need for the two devices to talk to each 
other. The DECC is comparing how “smart” DE that can dynamically control its local voltage 
compares with conventional DE. The controls are based on the worst case of no communication 
but greater functionality could be added if communication were available. 
 
The SC system has a response time in the millisecond range whereas the inverter system has a 
response time in the microsecond range. With small voltage changes, such as 0.1 V, the two 
devices can respond quickly; with larger voltage changes, such as 0.5 to 4 V, it takes them 
around 0.5 to 1 s to settle to a new steady-state voltage condition if the control gains are kept 
constant. The response can be made more rapid (i.e., 0.5s) by increasing the gains during a 
transient voltage change up to a limit to prevent overshoot or undershoot of voltage and to 
prevent local voltage instability (voltage oscillation during the transient). 
 
By incorporating larger generators in rotating DE (such as reciprocating generator sets) and 
larger inverters in microturbine or fuel cell DE), end users can meet both their active power and 
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nonactive or reactive power needs to support end-user and system voltages. The active power 
performs actual work, and reactive power is what inductive loads need to store energy, for 
example, for the operation of motors. Even idle synchronous motors, such as those used in 
industry, could be modified like our 250 hp synchronous motor to provide reactive power at the 
customer site. Incentives for end users to provide reactive power support are growing, and 
perhaps in a few years they will match the incentives for providing active power. 
 
Our industry partners of the DECC Laboratory view DE providing local voltage regulation as the 
wave of the future. The use of DE is growing, and local voltage regulation is a necessary 
ancillary service for ensuring power quality for more demanding loads, such as computers and 
electronics-based loads. Loads like these are increasingly showing up on the power system. One 
of our utility partners, SCE, is looking toward implementation of this technology on its 
“Distribution System of the Future.” SCE envisions providing for more than 30% of the reactive 
power needs of the distribution circuit using local DE. 
 
The DECC Lab offers the capability to test DE technologies in a real-world distribution system 
environment. It provides the link between testing and simulation needed to ensure accuracy of 
experimental results. Additionally, renewable energy technologies, many of them inverter-based 
technologies such as PV, can be accommodated in the DECC facility. A 50-kW PV array placed 
on the north end of the ORNL campus will provide a 600 V/134 Adc supply for testing our 
controls with PV inverters. 

10.2 Testing Approach 
To date, local dynamic voltage regulation at our DECC Laboratory has been tested at the DECC 
Lab. The approach was to dynamically change the reactive power output of the DE to either 
produce or absorb reactive power to raise or lower the voltage in order to regulate it to some 
voltage reference. The voltage reference may be based on a voltage schedule provided by the 
local utility. Obviously, end users would need a price incentive to produce VARs dynamically to 
regulate the local voltage, which would also support the overall distribution system. 
 
The DECC Lab currently has two DE mock-up systems. The SC provides a rotating-based DE 
consisting of  a synchronous motor that is excited by a 6.6 kW dc power supply. The other 
system is power-electronics based with a programmable inverter fed by a 144 kW dc power 
supply. Both systems are connected to an actual distribution system; the ORNL distribution 
system. For transient testing, we have a range of induction motors (this project used a 7.5hp 
motor) and two large load banks (500 kW with 1 kW steps and 375 kVar with 3.75 kVar steps). 
The focus of the testing was on the controls needed to perform dynamic voltage regulation. 
Development has centered on a PI controller for both the SC and the inverter. 
 
The various functional capabilities tested include (1) balanced voltage regulation, (2) unbalanced 
voltage regulation, (3) voltage regulation with current control, and (4) adaptive control gain. 
 
Balanced voltage regulation. This approach used PI control to dynamically regulate the average 
voltage of the three-phase voltages to maintain a reference voltage. PI control calculates the error 
between the average and the reference rms voltage to determine how to change the PWM of the 
inverter. The average rms voltage, updated at every sample, is the average of the three line-to-
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line or line-to-neutral voltages.  Initially, line-to-line voltages were used to calculate the line-to-
neutral voltages based on the assumption that the three phases are balanced. However, 
instrumentation was later modified to measure line-to-neutral voltages directly so that the 
measures could be used both for balanced or unbalanced conditions. For balanced voltage 
regulation, the inverter’s PWM for each of the three phases is the same. When the voltage 
produced by the inverter is higher than the system voltage and lagging the current, the inverter is 
injecting reactive power. 
 
Unbalanced voltage regulation. This approach used the rms voltage calculation for each of the 
three phase-to-neutral voltages and compared each to the reference to determine the voltage 
errors for each phase. Each phase of the inverter was controlled independently to correct the 
voltage error. 
 
Voltage regulation with current control or regulation. The previous two approaches did not 
include the ability to limit the current output of the inverter.  Limiting the current output is 
important in case of a large transient, such as a large change in voltage.  If the current output 
were not limited, the inverter would trip out on overcurrent protection when the voltage change 
was severe. This is desirable only in case of a fault; otherwise, we prefer that the inverter 
produce up to its capability to continue supporting local voltage to the best of its ability. 
Otherwise, the inverter would trip out and any support that it could provide would be lost. For 
current control, the inverter switches from voltage regulation to current regulation when the 
inverter current starts to exceed its rated or preset limit. Thus current control prevents the 
inverter from tripping out when a large transient occurs unless the transient is a fault. Some logic 
would be needed to distinguish between a severe voltage sag and a fault. For example, a voltage 
sag that requires 150% of the inverter’s rated current output (although the inverter would be 
limited to its full 100% output) could be classed as a severe transient, whereas a sag that requires 
higher output could be classed as a fault. Current regulation works much like voltage regulation: 
the average rms current for all three phases is calculated and compared with a current limit. If the 
current is below the limit, the inverter switches back to voltage regulation mode. However, if the 
current nears or reaches the limit, it is regulated to the reference current, which is slightly less 
than the limit. The control switches back to voltage regulation mode only when the current drops 
below the limit again. 
 
Adaptive gain control. Normally the gains of the PI controller, in this case the proportional gain 
or Kp and the integral gain or Ki, stay constant for voltage regulation regardless of whether the 
system is in steady state (very little change in voltage) or transient (a large voltage change occurs 
as the result, for example, a motor start or load step change).  Normally, the best gain values are 
determined (e.g., for Kp and Ki, and they are left fixed for the control. However, it is helpful for 
the gain to change dynamically during a transient, depending upon the severity of the voltage 
error (difference between actual and reference voltage). Adaptive gain control employs a step 
response for a voltage change that closely fits the exponential ideal response and reduces the 
voltage error to zero in five time constants. The time constant depends on the response capability 
of the DE; in this study, the time constant is about 0.06 s for the SC and much smaller for the 
inverter. The PI gains change only during the transient; they are thus unchanged before and after 
the transient event. Limits are set on the gain to prevent overshoot  or undershoot of voltage 
during the transition and to avoid voltage instability (voltage oscillations) during the transition. 
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10.3 Testing Configurations 
As shown in Figure 10-3, the two DE mockup systems at the DECC Lab are normally connected to 
two different distribution circuits of the ORNL 3000 substation.  The SC, a synchronous motor 
that is under-excited to absorb Vars or overexcited to supply Vars, is connected to a 480 V/1000 
A power panel fed from circuit 4. The inverter is connected to a 480 V/600 A power panel fed 
from circuit 2.  There is a tie load break switch (4-2-S) connecting circuit 4 and 2 that is 
normally open. Load break switches 4-S and 2-S, which connect circuits 4 and 2, respectively to 
the substation and energize the circuit are normally closed. 
 
Testing was conducted with two different circuit configuration schemes: one is the normal, 
parallel configuration, with the two DER connected with separate circuit feeds, and reconfigured 
circuits in a series configuration, with only one feed to the two circuits with the tie switch 
between them closed. Connecting the two DER in parallel to the distribution system gives the 
greatest electrical distant between them. For this configuration, the SC was fed from circuit 4 of 
the substation and the inverter was connected to circuit 2. The load break switches connecting 
the circuits to the substation were closed and the tie switch was open. There are two possible 
series configurations as indicated in Table 10-2 below. For series configuration 1, only the circuit 
4 and tie load break switches are closed, and circuit 4 feeds the two DER and loads of both 
circuits 4 and 2. For series configuration 2, only circuit 2 and the tie load break switches are 
closed, and circuit #2 feeds the DER and loads of both circuits. 
 

Table 10-2. Switching for the Three Different Circuit Configurations. 

Switches 
Normal or parallel 

configuration 

Reconfigured to series 
configuration 1 – Single 

feed via circuit 4 

Reconfigured to series 
configuration 2 – Single 

feed via circuit 2 
4-S Closed Closed Open 

2-S Closed Open Closed 

4-2-S Open Closed Closed 

 
The difference between the two series configurations is which DE is closer electrically to the 
substation. In configuration 1, the SC or rotating-based DER is closer to the substation; in 
configuration 2 the inverter-based DER is closer. Either series configuration puts the two DER 
much closer together electrically than the parallel configuration. It is important to test multiple 
DER both when they are electrically close and when they are electrically further away from each 
other to predict what will occur in actual utility installations of multiple DER. 
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Figure 10-3. Parallel (normal) configuration of circuits 2 and 4 forDECC testing. 

10.4 Testing Transients 
There are several means of producing transients to test dynamic voltage regulation methods. The 
voltage reference for the PI controls can be changed to force the controls to respond to a voltage 
change. The inverter, which has a range of 0 to ~62kVar output, can respond to a 0–3V change. 
The SC, which has a range of 0 to 300 kVar output, can respond to a change of 0–5 V or more. 
Ideally the response is a step function; but in reality, the response is more exponential, with the 
PI control reaching steady state at the new reference at around 5 time constants. The DECC Lab 
equipment for testing voltage transients includes an induction motor and load banks. The 7.5 hp 
motor used in this study was connected to the same power panel as the inverter. The motor 
produces a voltage sag of ~2.2 V for 0.13 s when started balanced (Figure 10-4) and ~1V for 2 s 
when started single-phasedj as shown in Figure 10-5.  
 

                                                 
j Single-phased refers to one phase of the motor being opened. In this study, the fuse was removed from one phase to 
achieve single-phasing. In the single-phased configuration, the motor cannot start and draws locked-rotor current, 
which can be 5-6 times rated. The motor logic protection trips the motor after 3 s to prevent motor damage. 

 



Local Dynamic Reactive Power for Correction of 
System Voltage Problems 

 ORNL/TM-2008/174 

 

~41 ~

 
Figure 10-4. Voltage transient due to balanced motor start. 

 
For the single-phased motor start, the voltages are unbalanced so that two of the phase-to-neutral 
voltages (in this case a and c) are sagged while the third phase (b) is open and thus causes no 
impact on that phase voltage. The motor is unloaded, so the transient is caused by the startup 
current of the motor. The current is sustained for a longer time because the motor is unable to 
start and only trips out after the motor protection logic trips the motor. In the balanced motor 
case, the startup transient is short due because of the low horsepower of the motor. 
 
The load banks also provide the ability to produce sustained voltage changes. The resistive bank 
has a range of 1 to 500 kW and the reactive bank has a range of 3.75 to 375 kVar. Since the 
resistive and reactive banks have step increments of 1 kW and 3.75 kVar, respectively, the 
degree of voltage change can be significantly varied for a test. Figure 10-6 and Figure 10-7 are 
examples of load bank step changes. 
 
A quite severe voltage transient can be produced when the 250 hp synchronous motor used for 
the SC is started. As shown in Figure 10-8, it creates a ~60 V sag on the SC panel.  When the SC 
and Inverter are connected in normal parallel configuration of Figure 10-3, the synchronous 
motor creates a 2.5 to 3 V sag on the inverter panel. However, when they are connected in series 
configuration represented in Table 10-2, the synchronous motor startup on the SC panel produces 
~7 V sagk on the inverter panel (Figure 10-9). 
 

                                                 
k The voltages on the SC power panel are measured line-to-line, whereas the voltages on the inverter panel are 
measured line-to-neutral. The voltage sag shown for the inverter panel as due to the synchronous motor start has 
been converted to the 480V line-to-line base. 
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Figure 10-5. Voltage transient due to single-phase motor start. 

 
 

 
Figure 10-6. Load step transient with the addition of 20 kW, 37.5 kVar load. 
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Figure 10-7. Load step transient with the removal of 20 kW, 37.5 kVar load. 

 
 
 
 

 
Figure 10-8. Synchronous motor (250 hp) startup and resulting voltage transient on SC power panel. 
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Figure 10-9. Synchronous motor (250 hp) startup transient and resulting voltage sag on inverter power panel 

when the SC and inverter are connected in series. 
 
The characteristics of the three different motor startup transients, balanced, unbalanced, and 
motor are shown in Table 10-3. 
 

Table 10-3. Degree of Voltage Sag and Unbalance and Duration of the Different Motor Start Transients. 
Voltage Sag Test Event Sag Duration % Unbalance 

Startup of 7.5hp Induction Motor on the Inverter 
Panel 

~2 V ~0.1s 5 to 10% 

Attempted Start of 7.5hp Single-Phased Induction 
Motor on Inverter Panel 

~1V ~2s 50% 

Startup of 250hp synchronous motor on SC panel 
when circuits connected in parallel 

~3V ~9s 15% 

Startup of 250hp synchronous motor on SC panel 
when circuits connected in series 

~7V ~9s 15% 

 
Voltage sag due to the startup of an induction motor on the inverter panel. A 7.5 hp 
induction motor was installed on the inverter’s panel (PP2) to test the response of the voltage 
regulation control (of the inverter and SC) to voltage sags caused by the motor start. All three 
phases of the motor were connected so that the motor starting would produce essentially a 
balanced (roughly equal) voltage sags on all three phases a, b, and c. The sag reading in Table 
10-3 refers to the greatest change in voltage during the motor start. A small motor was chosen for 
the initial test since it was uncertain how large of a motor the 150 A rms rated inverter could 
handle. The 7.5 hp motor start produced a very short (several cycles) voltage sag of ~2 V on the 
inverter panel without any regulation. (Besides this motor, the DECC Lab has 15, 25, 40, 50, 60 
and 75 hp induction motors available that will provide a range of voltage sags against which the 
inverter can be tested in the future. These larger motors will provide more severe balanced and 
unbalanced voltage sags.) 
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ase. 

Voltage sag due to a single-phased motor start on the inverter panel. One of the three fuses 
(phase b) was removed from the fuse block protecting the induction motor. Removing the fuse 
prevented the induction motor from starting when the motor starter was activated, resulting in 
longer voltage sag and in unbalanced voltage sag. The motor starter’s logic tripped out the motor 
allowing a more sustained voltage sag event of 0.7 to 1V for ~2 s. 
 
Voltage sag due to the synchronous motor start on an adjoining panel/circuit. The 250 hp 
synchronous motor on the SC panel (circuit 4) was started to create a 57–59 V sag on the panel. 
This translated to a 3 V sag on the inverter panel when the circuits were normally configured 
(DER in parallel) and 7 V when the circuits were reconfigured (DER in series). This voltage 
transient event was the most severe of the three events on the voltage of the inverter panel (PP3). 

10.5 Test Schedule and Data Collected 
The schedule for testing the various control capabilities at the DECC Lab during FY 2008 is 
given in Table 10-4. The testing started with balanced-voltage regulation control developed in 
FY 2007 and further refined. To apply unbalanced voltage regulation control to the inverter, line-
to-line voltages and calculations of the line-to-neutral voltages from them could no longer be 
used. Instead, we had to convert our instrumentation to measure line-to-neutral voltages. In May, 
we started testing balanced, unbalanced, and current control voltage regulation with various 
transients starting with reference and then load changes. (See Section 10.2 for a discussion of 
voltage regulation with current control). In August, we started testing adaptive PI gain control , 
which was developed and initially checked with simulations. First, the SC was tested separately, 
and then the inverter separately, and the SC and inverter `together connected in parallel and then 
in series. Adaptive PI gain control was tested with various transients, including reference 
changes, load step changes, and motor starts. 

10.6 Control Algorithms and Testing Results 
The PI control algorithms used in the testing, along with results from the testing at the DECC 
Lab, are described in this section. 

10.6.1 Voltage Regulation 

As shown in Figure 10-10, DER connected in parallel can inject or consume reactive power to 
regulate the system voltage vt at the point of common coupling (PCC). The DE current ic is only 
reactive current if the DER output voltage vc is in phase with the PCC voltage vt. When the 
amplitude of vc is larger than the amplitude of vt, the DER injects reactive power to the system 
and therefore boosts the PCC voltage; on the other hand, when the amplitude of vc is smaller 
than the amplitude of vt, the DER consumes reactive power, causing PCC voltage to decre
 

 



Local Dynamic Reactive Power for Correction of 
System Voltage Problems 

 ORNL/TM-2008/174 

 

~46 ~

Table 10-4. Schedule for testing of DE control at the DECC Lab. 
Date DE equipment Test Transients Note 

02/12/2008 SC and inverter Balanced 
voltage 
control 

Load changes Using line-to-line 
voltages for rms 
calculation 

03/03/2008 Inverter Unbalanced & 
balanced 
voltage 
control 

None Changed to line-to- 
neutral voltages for 
rms calculation 

04/23/2008 Inverter Voltage 
regulation 
with current 
control 

 Controller modified 
to provide both 
voltage and current 
limits and regulation 

05/01/2008 Inverter Voltage 
regulation 
with current 
control 

Load changes  

05/08/2008 SC and inverter series 
configuration 1 

Unbalanced & 
balanced 
voltage 
control 

Load changes 
unbalanced motor 
starts 

 

8/20/2008 SC Adaptive PI 
gains 

Change in voltage 
reference 

 

8/25/2008 SC and inverter Adaptive PI 
gains 

Load changes  

08/27/2008 SC separately, SC and 
inverter together 

Adaptive PI 
gains 

Reference and load 
changes 
Balanced motor 
starts 

 

09/03/2008 SC and inverter 
separately 

Adaptive PI 
gains 

Reference changes Response 
characteristics with 
variation in initial 
gains 

09/08/2008 SC Adaptive PI 
gains 

Reference changes Same as above 

 
 

 
 

Figure 10-10. Simplified system diagram. 
 
A closed-loop feedback controller is adopted in voltage regulation; the control diagram is shown 
in  
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Figure 10-11. The power system (simplified as a voltage source with impedance and a load as 
shown in Figure 10-10) is the controlled system. The PCC voltage is the control objective, i.e., 
the controlled variable. In feedback control, the rms value of the PCC voltage is controlled at a 
certain level, specified as the voltage reference in  
Figure 10-11. In each control step, the voltage reference and the actual PCC rms voltage are 
compared, and the difference (error) is input to the controller. A PI control algorithm is used in 
the controller and the demanded DE output voltage vc is given, which results in a new PCC 
voltage. This control loop repeats every stepsize (90 µs), and the PCC voltage is precisely 
regulated. 
 
 

 
 

Figure 10-11. Feedback controller. 

 
To verify the control method, a sudden load change, caused by switching the active power and 
reactive power of the resistive and reactive load banks on or off, was applied in the DECC Lab. 
Testing results are shown in Figure 10-12. The PCC rms voltage, shown in Figure 10-12a, is the 
voltage when there is a sudden load change in the system but no voltage regulation. Because of 
the load change, the PCC voltage drops 1.3 V (from 266.7 to 265.4 V). Figure 10-12b shows the 
load current (in rms), which shows the sudden load increase from the load bank setting change. 
With voltage regulation from DE, the PCC voltage is shown in Figure 10-12c, which is 
maintained at the reference voltage level despite the load increase. The transient time of the 
voltage is around 10 s. The reactive current injected by the DE to the system (see Figure 10-12d) 
was increased from 40 to 95 A. The performance of the controller was improved, as will 
discussed in the following sections, by modifying the control method. 

10.6.2 Current Limit 

The inverter in the DE system is vulnerable to overcurrent, but in the voltage regulation schemes 
in the previous section, the DE current was not monitored or controlled. If a large amount of 
reactive power is required to regulate the voltage, the current flowing through the inverter may 
exceed its rating and fail. To solve this problem, a current limit control loop is added to the 
voltage regulation controller. There are two control loops—a voltage control loop, as discussed 
in the previous section, and a current limit loop. The control diagram is shown in Figure 10-13. 
The current control loop is triggered when the current is detected at a level beyond the preset 
current limit and the voltage still has not reached the reference level. The entire control method 
ensures that voltage regulation is performed to the current capacity of inverter or limit setting of 
the control. 
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(a) PCC line-to-neutral rms voltage (V). 

 

 
(b) Load current rms value with a sudden 

load change applied (A). 

 
(c) PCC rms voltage with voltage regulation (V). 

 
(a) The reactive current injected to the system 

rms value (A). 
 

Figure 10-12. Voltage regulation with a sudden load change. 
 
In the other case, the load bank was off at the beginning, and then turned on (at t = 2.9 s into the 
data capture). The inverter current and the PCC voltage are shown in Figure 10-14c and Figure 
10-14d respectively. The current limit was set at 70 A, the red waveform in Figure 10-14c. The 
voltage reference was 269.5 V, the red waveform in Figure 10-14d. When the load was off, less 
reactive power was required to keep the voltage at the reference level. The inverter was operated 
at voltage regulation control mode, the current was below the current limit, and the voltage was 
controlled at the reference level. After the load bank was turned on at t = 2.9 s, the voltage 
dropped and more reactive power was required to maintain the voltage at the same level. 
However, because of the current limit, the inverter could not provide reactive current of more 
than 70 A. The current limit was triggered, the current was controlled at 70 A, and the voltage 
was lower than the reference level. 
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Figure 10-13. Control diagram of current limit for voltage regulation controller.l 
 
Voltage regulation control with current limit capability allowed the inverter to provide voltage 
support at its maximum level, and ensured that the inverter would not be operated beyond its 
ratings. 

10.6.3 Voltage unbalance Compensation 

In power systems, most voltage unbalance conditions are due to magnitude inequalities while the 
phase-angles are equal (120° or 2π/3) or nearly equal. If the voltage unbalance is in this category 
and the inequalities in the magnitudes are not very large (less than 1%), the DE with an inverter 
interface can compensate for the voltage unbalance by providing reactive power. By controlling 
the three phase magnitudes of the inverter voltage vc individually, the rms values of the three 
phase voltages of vt are controlled at a given reference level. 
 
To compensate for the unbalance in each phase, the three-phase voltages are controlled 
separately, instead of the average value of the three-phase voltages, which is the control scheme 
in the previous sections. The requirements of the inverter current ratings, the inverter dc side 
voltage rating, and the inverter dc side capacitor rating are higher then the balanced voltage 
regulation case. 
 

                                                 
l The controller performs voltage regulation only to the extent that current is kept equal to or below the current limit. 
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(a) Inverter current (Arms) when the load bank 
is switched on. 

 

(b) PCC voltage (Vrms) when the load bank 
is switched on. 

 
(c) ) Inverter current (Arms) when the load 

bank 
is switched off. 

(d) PCC voltage (Vrms) when a load bank 
is switched off. 

 
Figure 10-14. Testing results of current limit for voltage regulation controller. 

 phase c 
urrent, which is 70 A at its maximum, and the minimum current is only 20A (phase b). 

 

 
Figure 10-15 shows the testing results for the unbalanced voltage compensation. Figure 10-15a 
shows the waveforms of the three-phase voltages (Vrms) and the reference voltage, 267.7 V. The 
high-frequency switching at 12.5 kHz does create noise on the signal to some degree; better 
shielding of instrumentation may eliminate this in the future. As shown in the Figure 10-15, from 
t = 0 to t = 7.1 s, the inverter is operated in the unbalanced voltage compensation mode and after 
t = 7.1 s, it is turned off. While the inverter is operating, the three-phase voltages are regulated at 
the reference level and nearly balanced, and while the inverter is off, the voltages are unbalanced 
and lower than the reference. Figure 10-15b shows the three-phase inverter currents (Arms) 
produced by the inverter to balance and regulate the voltages. The maximum current is
c
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(a) PCC line-to-neutral voltages (Vrms). 
 

(b) Inverter phase currents (Arms). 

Figure 10-15. Testing results of unbalanced voltage compensation controller. 

10.6.4 Adaptive voltage control 

In the previous sections, the two gains, the proportional gain (Kp), and the integral gain (Ki) of 
the PI controller are preset. Based on the system characteristics and the control algorithm, The 
Kp and Ki ranges can be calculated. The controller’s performance is usually stable and 
satisfactory if the Kp and Ki values are within their ranges. Their values are preset and not 
adjusted throughout one testing sequence. However, sometimes there is lack of system 
information and such calculation cannot be fulfilled. “Trial and error” is usually the solution in 
such a situation. It is difficult to choose the appropriate values of Kp and Ki and the controller’s 
performance is not optimized. To improve the controller, an adaptive voltage control method was 
developed based on the control method used in the previous sections. In the adaptive control 
method, instead of the values for Kp and Ki being kept constant during the testing, their values 
are adjusted in real-time throughout the testing. 

ed at 0.5 s. 

 
In an ideal PI control response to a step change, the difference between the reference and the 
actual controlled variable is an exponential curve; by adjusting the values of Kp and Ki, the time 
constant of this exponential curve is changed, i.e., the speed of the response is changed. Because 
0.5 s (30 cycles) is considered by utility companies as an appropriate response time for the 
devices connected in the utilities, it is used in the adaptive control as the 5τ decay time of the 
ideal exponential curve. By adjusting the values of Kp and Ki, the controller makes the error 
track the ideal exponential curve; therefore, the time of response of the voltage control is 
regulat
 
A sudden load change of 20 kW (80 to 100 kW) and 37.5 kVar (37.5 to 75kVar) was applied to 
the DE inverter system at its power panel. The load change resulted in a voltage drop if there was 
no voltage regulation.  The inverter voltage (average rms of all three phases) waveform is shown 
in Figure 10-16a without voltage regulation. The voltage dropped 1.5 V because of the load 
increase. Figure 10-16b is the load current (average rms), which increased from 108 to 153.5 
Figure 10-16c shows the inverter voltage using the voltage regulation method (nonadaptive) 
presented in Section 10.6.1. The same load change was applied during the voltage regulation test 
and the response time was 2.42 s.  Figure 10-16d shows the inverter current (rms), which 
increased from ~40 to 90 A to maintain the voltage at the reference level despite the load change. 
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(a) PCC voltage (Vrms) without regulation. 
 

 
(b) Load current (Arms) during load change. 

(c) ) PCC voltage (Vrms) with non-adaptive 
voltage regulation. 

 
(e) Inverter current output (Arms) during 

load change. 

  
Figure 10-16. Testing results of voltage regulation for load change. 

 
By applying the same sudden load change as shown in Figure 10-16, the adaptive voltage 
regulation control was implemented. The test results are shown in Figure 10-17. Figure 10-17a 
shows the inverter voltage waveform with adaptive control. The same load was applied as above 
and the response time is 0.44 s. Figure 10-17b shows the ideal exponential curve (red waveform) 
and the actual voltage error (blue waveform). The actual error decay time was 0.44 s, which 
matches the 5τ decay time of the ideal curve (0.5 s). Figure 10-17c and Figure 10-17d show the 
increase in the inverter current and the inverter reactive power output for the load change. 
 
The adaptive voltage control method was also applied to the SC. The results are given in the 
Table 10-5.To verify the validation of the control method, both the inverter and the SC were 
tested with different response times; results of that testing are listed in Table 10-5. The first two 
columns show the setting and actual response times for the inverter, respectively. The third and 
fourth columns show the settings and actual response times for the SC, respectively. The testing 
results verify that compared to the voltage control method described in Section 10.6.1, the 
adaptive voltage control method has a faster transient response time. As a result, the response 
time was controllable and the local voltage stability was ensured because the system was 
operated at the selected response speed. 
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(a) PCC voltage (Vrms) with adaptive 

voltage regulation. 
 

(b) Inverter delta voltage (ΔV) and ideal exponential 
response curve. 

 
(b) Inverter current (Arms) before and after 

load change. 

 
(d) Inverter reactive power (kVAR) before and after 

load change. 
 

Figure 10-17 Testing results of adaptive voltage regulation for load change. 
 

Table 10-5. Response times for adaptive voltage regulation. 
Inverter Synchronous condenser 

Setting (s) Actual (s) Setting (s) Actual (s) 
0.1 0.176 0.5 0.663 
0.2 0.332 1.0 1.006 
0.5 0.64 2.0 2.417 
1.0 0.927 5.0 5.214 
2.0 2.408 10.0 7.151 
5.0 2.82 15.0 9.158 

10.0 4.212 25.0 12.007 
 

10.7 Overall Findings 
ORNL has developed an autonomous local control scheme for inverter-based DE that 
dynamically regulates local voltage.  The scheme is near-real time in that it calculates the rms 
value of the local voltage in every sample and uses it as input to aPI controller for the inverter 
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PWM. The inverter operates at 12.5 kHz switching frequency while the control sampling rate is 
every 90 µs. Thus the PI controller is updated every 90 µs.  The feedback controller compares 
the actual voltage based on the calculated rms with a reference, which can be based on a utility-
specified voltage schedule, to determine the voltage error. The error, along with the PI gains of 
the controller, determines the new output for PWM values and thus the new ac voltage waveform 
generated by the controller. 
 
The controller which was previously only for voltage control, now also provides current control. 
While the inverter is in voltage control mode, the current control mode activates when voltage 
control calls for the inverter to provide more current than it is limited to or capable of providing 
to meet the voltage reference. If the controller is in current control mode and the current control 
calls for the inverter to provide a higher voltage than the inverter is limited to or capable of  
providing, then the controller reverts to voltage control mode. The current control mode ensures 
that the inverter does not operate beyond its rated (thermal or electric limitation) capability and 
thus ensures continuous support of system voltage for various transient conditions unless a 
nearby fault necessitates that the inverter trip out. 
 
The advantage of the rotating-based DE or SC in the DECC-specific testing situation is its 
robustness, although it is slower than and not as versatile as power electronics-based or inverter-
based DE. Another short-coming of the SC is its inability to independently regulate each phase 
voltage separately as can be done with the inverter. 
 
The programmable PWM inverter tested can operate at up to 20 kHz switching frequency, 
although the controls have been tested with it operating in the 10 to 12.5 kHz range. The 
sampling rate of the control systems is on the order of 90 μs, and the rms calculation used for the 
voltage control is updated at every sample. 
 
This project successfully implemented balanced voltage regulation control, which maintains the 
voltage within ± 0.1 V of the reference voltage. Unbalanced voltage regulation was also 
successfully implemented, but this control scheme requires much more current output capability 
from the small research inverter in the DECC Lab for voltage unbalance than is normally on the 
ORNL distribution circuits 2 and 4. The extra calculations (instead of one rms calculation we 
now have three) did not impact the unbalanced control implementation. 
 
With regard to testing of adaptive gain control, we were able to implement the controller with 
adaptive gain on both the SC and inverter. The SC was tested with both an increase and a 
decrease in the voltage references to check dynamic response of the control. Adaptive gain 
continuously calculates what new gain is needed to follow the exponential time response curve 
of the unit based on voltage error and time, but it changes the gain only when a significant 
difference between the actual and reference voltage values exists, e.g., ≥  ±1 V. Otherwise, the 
gain is kept fixed since, the transient is perceived to be mild enough to be handled by the existing 
PI gain settings. An area of future research, is analyzing the sensitivity of adaptive gain control 
to changes in the voltage detection sensitivity, i.e., instead of a ±1 V, use a ±0.5 V. Different 
time constants were tried to determine which ones gave the best fit. If too low a time constant 
was used, it pushed the gain too high and saturated at the limits set to prevent overshoot. If too 
high a time constant was used, the gain stayed very low with a slow response to the voltage 
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change. Adaptive gain control adapted the gains for whatever voltage change occurred to ensure 
a response to a fixed time such as 0.5 s. This rapid response time was selected as it will prevent 
DE interaction with conventional utility system equipment for regulating voltage. The DE will 
have responded to the voltage change and reset its reactive power (VAR) output well before the 
conventional utility equipment begins any level of control.  In other words, fast rapid control is 
transparent to the utility system control. The inverter could be operated with gains, especially Ki, 
much higher than those seen in our earlier testing. 
 
Current control was successfully implemented with balanced voltage control. The logic that 
controls the switchover from voltage to current was fast enough for most events.  
 
Adaptive gain control accelerated the response of the SC and inverter for the various voltage 
transients. The input variables for adaptive gain control included the initial gains, minimum 
voltage error before it is engaged, and the time constant. Neither the SC nor the inverter wass 
fast enough to respond to the balanced motor start, which only lasts 0.1 s. However, both can be 
fast enough to respond (reach a new operating point) within 0.5 s. 

10.8 Next steps 
We will continue to adjust the voltage regulation controls to achieve better response. We will test 
a greater variety of load changes to characterize the capability of the adaptive controls to respond 
to voltage change, and to evaluate the accuracy of our simulation results. The variables involved 
in the controls include setting the desired time window of response (e.g., 0.5s) and setting the 
initial and maximum gains for the PI controls. In addition, the desired trigger points (voltage 
deviation from the reference) for engaging and disengaging adaptive gain should be further 
evaluated. 
 
Another area of study involves setting the optimal initial gains for the feedback controller. This 
research has developed a method for the controller gains to be adaptive during a transient, but it 
may be useful to add a self-learning function so that the controller adjusts its initial gains (which 
stay fixed for steady-state regulation) to optimize its response for continual regulation during 
circuit reconfiguration or major circuit load changes. The initial gains, once optimized, may not 
need to be changed again unless the circuit is reconfigured or there are circuit or load changes 
that move the controller from its optimal performance.  It may be that the fixed gains will need to 
be checked on a periodic basis by having the inverter tweak its reference setting (to force a 
change) to determine whether the response is still optimized and make adjustments as necessary. 

11 SIMULATIONS OF SYSTEM DYNAMIC LOCAL VOLTAGE REGULATION 
USING SYSTEM LOAD MODEL 

This section describes a simulation of system dynamic local voltage regulation on the 
distribution system using a composite load model. Among the different loads present in the 
practical distribution systems, A/C loads are of major interest as they have the greatest impact on 
the system voltage recovery after fault. The reason behind stalling of motors and the behavior of 
stalled A/C motor loads was described in Section 4. 
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This section encompasses simulation results from modeling normal and stalled A/C loads along 
with other percentages of constant impedance and constant power loads.  Several cases were 
considered for the study. Case A and B were considered to present the simulation results for the 
behavior of A/C motors before and after a fault. These two cases did not consider the installation 
of DER into the system. The modeling methodology adopted in Case A and B was again used to 
model the loads in Case C, where DE was simulated to help the system with voltage recovery. 
 
The modeling of residential loads was done based on different load compositions: e.g., A/C 
compressor motors, constant impedance loads, constant power loads, and normal three-phase 
motor loads. The distribution of load among different components was simulated to mimic the 
practical distribution and makeup of loads. For the Case A simulation, the load composition was 
based on reference [15] and considering certain assumptions that are mentioned later. Case A 
considered the aggregate model of a larger subtransmission system so that all the generation and 
loads were represented by a single substation and loads respectively. 
 
Once the results were obtained from Case A using the Matlab SimPowerSystem platform, 
another small model was developed with the distribution feeder made up of a total motor load of 
50 kVA and constant impedance loads with different power factors. The simulation results for 
this case are presented in Case B. Finally, a model was developed with a system similar to the 
one used in the adaptive voltage regulation method.  The results for this case are presented in 
Case C. This model also considered the introduction of DE into the system and showed the effect 
of DE in preventing the stalling of motors. 
 
The basic underlying assumptions and the methodology for developing of induction motor 
models to reveal the actions of motor stalling during the system disturbance, such as a three-
phase to ground fault, are described in Section 11.2.1. The assumptions are mainly based on the 
behavior of induction motors in the case of faults found from the testing of A/C units. 
 

11.1 Assumptions and Methodology 
The assumptions and methodology of the cases are described in this section. The methodology 
involved the use of Matlab and SimPowerSystem library along with the development of logic to 
simulate an A/C stall event. 

11.1.1 Assumptions: 

1. According to the test results on A/C motors, these compressor motors can stall in as little 
time as 3 cycles. This time is considered as a benchmark for the transition of induction 
motors to stalled mode. 

 
2. The voltage magnitude criterion for induction motors to enter a stalled condition is 

0.6 pu. If the voltage at the induction motor terminal is below 0.6 pu for 3 cycles or more, 
the motors stall. 
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3. Once the A/C units are stalled, they remain stalled until they are eventually taken out of 
the system provided that there is no additional reactive power (VAR) support in the 
system. 

 

11.1.2 Methodology: 

While the loads were modeled in the MATLAB platform, the Asynchronous Motor model of the 
SimPowerSystem library was considered to model the A/C units. In normal mode, the actual 
induction motor model is used. Following the fault, if the voltage at the motor terminal falls 
below 0.6 pu for 3 cycles or more, the induction motor model switches to the constant impedance 
load model and stalled complex power is increased by 6 times that in the normal mode of 
operation. The power factor considered for the normal mode of operation is 0.88 and the stalled 
mode is 0.58. 

, the actual 
induction motor model is used. Following the fault, if the voltage at the motor terminal falls 
below 0.6 pu for 3 cycles or more, the induction motor model switches to the constant impedance 
load model and stalled complex power is increased by 6 times that in the normal mode of 
operation. The power factor considered for the normal mode of operation is 0.88 and the stalled 
mode is 0.58. 
  
The flowchart of overall methodology of the induction motor loads modeling is presented in 
Figure 11-1. 
The flowchart of overall methodology of the induction motor loads modeling is presented in 
Figure 11-1. 
  

Induction motor 
(stalled mode) 
1. Constant Impedance 
load model 
2. Compute Sstall = 
6xSnormal 
3. Computer Pstall and 
Qstall with pf of 0.58 
 

Fault occurs and 
if V < 0.6 pu for 
3 cycles or more 

Gradual removal of 
stalled A/C motors 
eventually until all 
stalled motors are 
removed from the 
system. 
 

Induction motor 
(Normal Mode) 
 
Asynchronous motor 
model of 
Simpowersystems with 
pf 0.88  

  
  

Figure 11-1. Overall methodology of load modeling. Figure 11-1. Overall methodology of load modeling. 

11.2  Simulation Results 11.2  Simulation Results 

11.2.1 Case A: Verification of motor load characteristic during a 
subtransmission fault using the aggregate load model 
11.2.1 Case A: Verification of motor load characteristic during a 
subtransmission fault using the aggregate load model 

The system configuration of a transmission and sub-transmission model is shown in Figure 11-2. 
This is a hypothetical utility system based on reasonable assumptions. The complete load 
composition for this case is shown in Table 11-1. The test data were extracted from reference 
[15]. 

The system configuration of a transmission and sub-transmission model is shown in Figure 11-2. 
This is a hypothetical utility system based on reasonable assumptions. The complete load 
composition for this case is shown in Table 11-1. The test data were extracted from reference 
[15]. 
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Figure 11-2. System configuration for Case A. 
 

Table 11-1. Load composition for Case A. 
Load 

Parameters 
Constant power 

(33.6%) 
Constant impedance 

(21.9%) 
3-ph motor 

(15.6%) 
Residential A/C 

(28.8%) 
MW  320  209  133  246 
MVAR  0   0  66  121 
PF  1.0  1.0  0.9  0.9 

 
During the simulation, the following assumptions were made based on Reference [15]: 
 
1. Three-phase-to-ground fault is applied at 0.5 s on the 500 kV bus. 
2. Fault is cleared in 4 cycles. 
3. One of the 500 kV/115 kV transformer is isolated once the fault is cleared. 
4. The load models considered are the aggregate load model for all kinds of loads, e.g., 

A/C loads, three-phase motor loads, and constant impedance loads. 
5. All induction motors stall if the voltage is below 0.6 pu for 3 cycles or more. 
6. Stalled three phase motors are taken out of the system gradually over 30 s after the fault. 
 
Figure 11-3 shows the voltage profile at the 115kV bus for the load composition of Figure 11-2 
without modeling of the stalled motor loads. It clear shows that the voltage recovers quite 
quickly after the fault is cleared, and the effect of stalling of A/C motors does not appear in the 
response. 
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Figure 11-3. Voltage profile of bus 115kV without modeling of stalled case. 

 
Figure 11-4 shows the voltage profile at the 115kV bus with the load model of Figure 11-2 
modeling the stalled induction motors based on the methodology described in section 11.1.2. The 
voltage profile clearly shows the effect of induction motor stalling. Once the fault is cleared, the 
voltage recovers to 0.6 pu, but is not able to recover to the original value as quickly as in the first 
case. All the motors stall 3 cycles after the fault and remain stalled because voltage cannot 
recover quickly to its pre-fault level. The tripping of the residential A/C motors starts after 2.5 s 
and continues until all motors are tripped in 30 s. As the stalled motor loads are taken out of the 
system, the voltage profile of the 115 kV bus gradually restores to its original value. The plot of 
Figure 11-4 is very close to the operational data given in reference [15]. 

11.2.2 Case B: System with 240 V distribution feeder  

This is a hypothetical test system with ten motors connected at 240 V along a distribution circuit 
to represent a worst-case commercial system. The buses, motor starters, etc. are not shown in the 
system diagram. The system has ten induction motors with a capacity of 5 kVA each.  The 
system also includes constant impedance loads of power factor of 0.5 and 0.9 in a feeder at 
single-phase 240 V level is considered for this case. Constant impedance loads with power factor 
of 0.5 are included to represent compact (standard) fluorescent lamp loads. The system 
configuration used for this case is shown in Figure 11-5. A methodology similar to the one 
described in Section 11.1.2 is adopted to model the stalled motors. The motor inertia is set to a 
value of 0.02 s to represent high-efficiency motors. In this case, the fault is applied the 12 kV 
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level in 0.5 s and cleared after 4 cycles. The load composition for this case is presented in Table 
11-2. 
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Figure 11-4. Voltage profile at the 115 kV bus after using composite 

load model and modeling of stalled case. 
 
The voltage profile of the substation at the 12 kV level is shown in Figure 11-6. The capacitors 
in the system are adjusted so as to maintain the substation voltage at exactly 1.0 pu. The voltage 
profile for load bus 1, which is the nearest bus of the feeder, and the voltage profile of load bus 
10, which is the farthest bus of the feeder, are shown in Figure 11-7 and Figure 11-8, 
respectively.  The simulation is carried out for 12 s. It can be observed from Figure 11-7 that 
once the fault is cleared, the voltage at load bus 1 recovers only to around 0.45 pu and takes 10 s 
to recover to the value before fault. The effect is due to the stalling of A/C compressor motors 
when the fault occurs. Once the fault is cleared, the voltage gradually starts to recover following 
the subsequent tripping out of the stalled motor loads by their thermal relays. The original value 
of voltage is reached only after all the A/C motor loads are taken out of the system. Figure 11-8 
presents a similar delayed voltage recovery following a fault at bus 10, but since this bus is the 
farthest one in the radial feeder, the voltage after the fault is only around 0.1 pu. 
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Figure 11-5. System configuration with 50kVA motor loads. 

 
 
 
 
 
 
 

Table 11-2. Load composition for Case B. 
Load 

parameters 
Constant 

Impedance 
(30%) 

Constant 
Impedance 

(20%) 

Residential 
A/C 

(50%) 
kW 

 15  18  44 

kVAR 
 25.98  8.717  23.748 

PF 
 0.5  0.9  0.88 
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Figure 11-6. Voltage profile of substation at 12kV level. 
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Figure 11-7. Voltage profile of load bus 1. 
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Figure 11-8. Voltage profile of load bus 10. 

11.2.3 Case C: System with 10 MVA loads in a 13.8kV feeder 

The next case considered is one with 10 MVA loads in a 13.8 kV feeder with the fault at the 115 
kV bus. This represents a typical distribution primary feeder. The system configuration is as 
shown in  
Figure 11-9. 
 

500kv
500kv/115kv 115kv/13.8kv

Line

Transmission system Primary feeder 
13.8kv/208v

DER at 

lateral 3R fault

 
Figure 11-9. System configuration with 10 MVA loads. 

 
The DER is connected to the 13.8 kV feeder via a 208 V/13.8 kV distribution transformer. 
Control of the DER is carried out with the adaptive voltage control method described in Section 
10.6.4. The size of the DER is considered to be unlimited, which injects the reactive power 
required to improve the fault voltage to above 0.6 pu in 3 cycles so that none of the A/C motors 
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will enter stalled mode. The controller gain KP and KI values chosen for the adaptive control of 
the DER during the simulation are shown in Table 11-3. 
 

Table 11-3. Controller gain values for adaptive control of DER for Case C. 
 

Event KP KI

Before fault  0.05  1 
During fault  0.4  3.5 
After fault  0.6  6 

 
 
The load composition for this system is given in Table 11-4. 
 
 

Table 11-4. Load composition for Case C. 
Load 

Parameters 
Constant 

impedance 
(30%) 

Constant 
impedance 

(20%) 

Residential 
A/C (50%) 

MW  1.5  1.8  4.4 

MVAR  2.59  0.871  2.37 

PF  0.5  0.9  0.88 

 
 
For this case, the simulation was carried out for the case with and without DER at bus 3. For the 
system shown in  
Figure 11-9, the fault was applied at the 115 kV bus at 0.1 s and cleared at 0.2 s. 
 
Figure 11-10 shows the voltage profile at bus 1 without DER. Without the reactive power 
support from DER, the A/C motor loads entered the stalled mode so that the voltage could not 
recover quickly to the value before the fault. The delayed voltage recovery to a value slightly 
above the original one can be clearly seen in Figure 11-10. 
 
Similarly, Figure 11-11 and Figure 11-12 show the voltage profile at bus 2 and 3, respectively. 
The voltage of bus 3 can recover to a slightly higher value after the fault than bus 2 and bus 3, 
which is visible in Figure 11-12. Note that in these figures, the voltages from 0 s to 0.02 s are 
due to the starting process of the simulation and thus do not correspond to any actual activity. 
 
Figure 11-13 shows the active and reactive power of the stalled motor terminal located at bus 3. 
It can be observed that the motor drew a huge amount of reactive power in the stalled case. 
Before the fault occurred, the motor was in normal running state, so the active and reactive 
power of the stalled motor terminal was simply zero. The motor unit is taken out of the system at 
0.3 s so the real and reactive power are zero after 0.3 s. 
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Figure 11-10. Voltage profile at bus1 without DER. 
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Figure 11-11. Voltage profile at bus2 without DER. 
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Figure 11-12. Voltage profile at bus3 without DER. 
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Figure 11-13. Active and reactive power in motor terminal at bus 3. 

 
Now, the case with installation of DER at bus3 and the effect of preventing the A/C motors from 
stalling is observed. Figure 11-14 through Figure 11-16 show the voltage profile at bus 1, 2 and 3 
after the DER is installed at bus 3. It can be observed from the graphs that after the installation of 
DER, the motors do not enter the stalled mode and continue to be in the running mode. While 
comparing the voltage profile of Figure 11-10 and Figure 11-14, it can be seen that the fault 
voltage of around 0.5 pu has been boosted to above 0.6 pu in around 3 cycles. As a result the 
A/C motors do not stall in the later situation, and the voltage quickly recovers to its original 
value almost immediately after the fault. Some oscillations are visible in the voltage response 
before reaching the steady-state value, which might be a result of the induction motor dynamics. 
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Figure 11-14. Voltage profile at bus1 with DER. 

 
Figure 11-17 shows the reactive power injection from DER at bus 3 in order to prevent A/C 
motors from stalling. It can be seen that around 20 MVAR is required for less than 0.1 s duration 
in order to boost the voltage above 0.6 pu, which settles down to almost zero after few cycles. 
For a single DER, the current injection immediately after the fault and during the fault would be 
quite large. A future area of is the sensitivity of the inverter current versus the voltage boost 
requirement. Also, as mentioned above the study only considered a single DER but the current 
injection per DER will decrease as multiple DER is added to the feeder. This is another area of 
future study. 
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Figure 11-15. Voltage profile at bus2 with DER. 
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Figure 11-16. Voltage profile at bus3 with DER. 
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Figure 11-17. Reactive power injection from DER at bus 3. 

 
It is clear from the simulation results that DE is capable of preventing the stalling of A/C motor 
loads and thus can help prevent microvoltage collapse. The large amount of reactive power 
injection required for a short duration indicates that an inverter with a short-term overload 
capability would be ideal; one way to implement such a solution is perhaps to have an inverter 
that is electrically rated for the overload capability but thermally is not designed for continuous 
operation at 50% of the electrical rating. This means that the package (i.e., heat sink) would cost 
less, be more compact, and reduce the cost of the inverter. Presently, there is no other effective 
way to provide overload capability other than the use of new materials, i.e., silicon carbide, that 
allow the inverter to operate more efficiently and thus cooler. Another possible solution is to 
consider multiple smaller DER in the system. Improvement in power electronics, such as the use 
of silicon carbide switches to boost efficiency and reduce heating, may be a way to improve the 
peak performance overall—especially during a short time period such as 10 cycles—to produce 
an overload capability. This issue needs more investigation in the future. 

12 CONCLUSIONS 
The voltage stability of the electric power system is a complex issue with growing problems. 
DE can be part of the solution since DE can control local voltage if applied with the right 
controls and adequate capacity. The growing pressure on transmission and distribution systems 
to operate at lower margins, as well as the impact of new loads, is putting greater pressure on 
system stability. One concern is the growth in use of energy-efficient A/Cs that can stall when 
voltage sags (i.e., at 60% or even 70% of nominal voltage on a very hot day) as a result of a 
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transmission or subtransmission system fault. Another concern is the growth of power 
electronics loads—such as CFL bulbs, flat panel TVs, and computers—because they may lead 
to harmonic, power factor, and power quality issues. 
 
We have developed a rapid dynamic voltage regulation method for inverter and rotating DE 
systems using PI feedback control. The method can provide a DE system with the ability to 
control active and nonactive power as well as voltage, current, and power factor. We have 
demonstrated both in software and with testing at the DECC Lab the ability to regulate voltage 
using an average rms calculation at a sampling rate of 90 µs while the inverter is operated at a 
switching frequency of 12.5 kHz. In addition, we have demonstrated the same control 
methodology with an SC to show that the same method can be applied to a rotating DE system. 
With two-loop control, we can provide voltage regulation while controlling the current output of 
the inverter. This control capability is important to ensure the inverter-based DE continues to 
support local voltage to the extent of its capability by limiting the current to its rating. 
 

We have shown that local voltage regulation is a practical method for expanding the margin to 
local voltage collapse and for providing local power quality. DE systems equipped with inverters 
are an excellent method of providing local regulation when the inverter is equipped with rapid, 
adaptive control. In the severe case of a local fault, it would be desirable for the inverter to have 
short-term overload capacity to be able to provide the needed reactive power (VARS) for 
perhaps 0.1 s to prevent voltage sag during faults from such loads as energy efficient A/C 
compressor motors. Our simulation and test results have confirmed our findings.
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