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Abstract. The development path for the Spherical Torus (ST) is envisioned to lead to a 
Component Test Facility (CTF) (Peng et al 2005 Plasma Phys. Control. Fusion 47 B263) 
and possibly to an ST-based DEMO. The progression from present day ST experiments 
such as the National Spherical Torus Experiment (NSTX) (Synakowski et al 2004 Nucl. 
Fusion 43 1648) and the Meg-Ampere Spherical Tokamak (MAST) (Lloyd et al 2004 
Plasma Phys. Control. Fusion 46 B477) through intermediate devices to the CTF and 
DEMO needs to be guided by strategic consideration of scientific and technological steps 
which can be taken along the way with an appropriate balance of advancement versus 
risk. Parametric studies are an essential part of this process, and must be performed using 
methods which are efficient but comprehensive enough to capture key physics and 
engineering details using a common method to evaluate design point options over a wide 
range. This article describes the “systems code” methodology developed by the authors 
starting from prior work by others (Jardin et al 2003, Fusion Sci. Tech. 43) and then 
improved in terms of physics and engineering algorithms and mathematical approach. In 
addition, some benchmarking and design point results are presented. 
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1. Introduction 
 
Physics and engineering algorithms are processed using Microsoft EXCEL and its non-linear 
“solver” (Frontline Systems, Inc. http://www.solver.com/xlscompare.htm). The physics approach 
relies on a variety of well established formulae consisting of one dimensional functions as well as 
two dimensional functions numerically integrated over the plasma cross section. Thus the 
characterization of the approach as “1-1/2d”. Key physics parameters which relate to stability are 
constrained by limits determined by algorithms derived from MHD equilibrium studies by 
Menard[5], Wong[6] and Lin-Liu[7] over a range of aspect ratio A. While the physics algorithms 
are valid over the full range of devices, the engineering algorithms depend on the specific details 
of machine construction (e.g. magnets) as well as the time duration of the operation (e.g. pulsed 
or steady state). Therefore several variants of the code are needed to address different types of 
machines.  
 
In article we present some basic definitions, a derivation of the physics limits, the physics 
algorithms, the engineering algorithms, and a description of the solution method. At the end some 
sample results are presented.  
 
2. Definitions 
 
The plasma cross section (95% flux surface, containing 95% of the plasma poloidal magnetic 
flux) is shown in figure 1 and described by the following equations 
 

! 

R(") = R0 + a#cos(" + $ # sin("))  
 

! 

Z(") =# $ a$ sin(")  
 
where: 
 
R0  = major radius (m) 
a = minor radius (m) 
A = aspect ratio = R0 /a 
ε = inverse aspect ratio = 1/A 
κ = elongation 
δ = triangularity 
θ = poloidal angle 
 



 
 

Figure 1. Plasma cross section 
 
In determining the size of the vacuum vessel it is necessary to consider the entire plasma volume. 
Therefore we define A100 and a100 geometric quantities related to the 100% flux surfaces and use 
these to determine the vacuum vessel geometry for engineering purposes. The relationship 
between the 95% and 100% quantities was derived based on a pair of equilibria generated at 
A=1.5 and A=2.5 which bracket the aspect ratio range being considered in the subject study with 
typical values of triangularity and elongation. The following linear relationship was derived: 
 

! 

A
100

= A m * a + b( )   
where: 
 
a = 0.017  
b = 0.932 

 
 
3. Physics Algorithms 
 
The physics equations describe fundamental relationships between plasma variables but do not 
have a unique solution and cannot be solved directly as a group since the number of unknowns 
exceeds the number of equations. To obtain a solution for a particular plasma state the equations 
are divided into linked subsets which can be solved given a set of inputs. Then the solver is used 
to find a solution which satisfies linkages between the subsets as well as an optimization criteria. 
This section presents the physics equations in the order of calculation sequence.  

 
3.1 Elongation (κ) Aspect Ratio Dependence 
 
According to Menard the maximum κ as a function of inverse aspect ratio ε is as follows: 
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"
max

=1.46155 + 4.13281# $ 2.57812#2 +1.41016#3 
 

 



Similarly, according to Wong as a function of aspect ratio:  
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"
max

=1.082 +
2.747

A
 

 
A comparison of these results is given in figure 2. 
 

 
Figure 2.  Maximum elongation κ vs. aspect ratio A 

 
The work described herein typically uses the average of the Wong and Menard formulations. 
 
3.2 MHD Safety Factor 
 
The MHD safety factor, number of toroidal rotations per poloidal rotation of a field line on the 
95% flux surface, is expressed in two forms, namely qcyl and qMHD, which are defined as follows: 
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where: 
 
BT  = vacuum toroidal field at R0  (T) 
Ip  = plasma current  (MA) 
 
The calculations described herein rely primarily on qcyl and report qMHD as an output, for 
information only. 
 
3.3 MHD Safety Factor Aspect Ratio Dependence 

 



According to Menard the minimum safety factor as a function of aspect ratio is: 
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qcyl _ min =12.259 "13.58A + 6.4286A
2
"1.0417A

3

 
 

Note: Menard prescribed βTmax(ε), βNmax(ε), and κmax(ε). The writers extracted qcyl min(A)  
according to: 
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According to Wong the minimum safety factor as a function of aspect ratio is: 

 
 

! 

qcyl _ min =1.21+1.3A " 0.25A
2

 
 

A comparison of these results is given in figure 3. 
 

 
Figure 3.  Safety factor vs. aspect ratio A 

 
The work described herein typically uses the Wong formulation for qcyl_min. 
 
3.4 Plasma Current 
 
With R0,a,κ, and qcyl determined the plasma current (in MA) is calculated according to: 
 



! 

Ip =
5 "10#6a2BT

qcylR0

1+ $ 2

2

% 

& 
' 
' 

( 

) 
* 
* 
=
5 "10#6R

0
+2BT

qcyl

1+ $ 2

2

% 

& 
' 
' 

( 

) 
* 
* 
=
,R

0
+2BT 1+ $ 2( )
10

6
qcylµ0

 

 

! 

Ip =
"R

0
#2BT 1+ $ 2( )
10

6
qcylµ0

 

 
 
3.5 Density and Temperature Profiles 
 
In prior work, spatial distribution of temperature and density across the plasma cross section were 
assumed to be parabolic to a power according to: 
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where: 
 
r = variable in minor radius 
a = minor radius of plasma = R0/A 
T0,n0 = central peak temperature and density at r=0 
αT, αN = shape exponents on temperature and density  
 
These forms are convenient because related integrals can be readily solved in analytic form. 
However in our recent work we include additional terms which allow a more realistic profiles 
over which we can integrate numerically. Thus we represent temperature, density, and heating 
power using the following form: 
 
 

! 

x(r) = x
0
1- (1- " -#) *

r

a

$ 

% 
& 
' 

( 
) 
2

- " *
r

a

$ 

% 
& 
' 

( 
) 
4

-# *
r

a

$ 

% 
& 
' 

( 
) 
8* 

+ 
, 

- 

. 
/ 

0

 

 
We choose the coefficients α, β, and δ based on fits to experimental results on NSTX. We 
perform numeric integrations over the profile subdivided into 100 steps in r/a, and also compute 
peak to average ratios numerically. 
 
3.6 Beta Limits and Aspect Ratio Dependence 
 
According to Menard an appropriate limit on βN is as follows: 
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"Nmax (#) =  
6.96436 -14.043# + 45.5#2 - 31.3086 #3

100
 

 



According to Wong the βN limit depends on A, κ, and pressure peaking factor. The peaking factor 
is as follows: 
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where x=r/a. Then the βN limit is: 
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According to Lin-Liu the βN limit is as follows: 
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"Nmax (A) =
-0.7748 +1.2869# - 0.2921 # 2

+ 0.0197# 3

tanh((1.8524 + 0.2319#)/A
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/10
 

 
It is noted that the above includes a dependency on elongation. A comparison of these results is 
given in figure 4, including the Lin-Liu equation using the kappa values from Menard and Wong. 
 

! 

   

! 

Figure 4.  Max. βN vs. A 
 

The work described herein relies primarily on the Lin-Liu formula.  
 

The solver arrives at a value for total pressure βN-Total which must be ≤ βNmax. This total includes 
the partial pressures due to thermal ions and electrons as well as energetic ions consisting of alpha 
particles and neutral beam injected ions. The total pressure resulting from the thermal ions and 
electrons is referred to simply as βN. Therefore: 
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With βN and other variables previously determined, βT can βP can be calculated based on their 
definitions as follows: 
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Finally, the volume averaged pressure is: 
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3.7 Bootstrap Current Fraction 
 
Bootstrap current fraction fBS is dependant on βP and aspect ratio as follows: 
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fBS =
"#P

A
= "#P $  

 
where X is a function containing terms related to shape and profile. In the work described herein 
we apply a curve fit function X = kBS(A)*Peakfactor0.25 which results in fBS = 0.9 for the Wong 
case and fBS = 0.99 for the Menard case since these were the applicable bootstrap fractions for the 
MHD stability analysis performed. Therefore fBS is calculated as follows: 
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fBS = kBS *Peakfactor
0.25
* "P #  

 
where for Menard: 

! 

kBS (A) =  0.344 +0.195 * A  
 

and for Wong: 
 

! 

kBS (A) =  0.6783 +0.0446/A  
 

A comparison of these results is given in figure 5.  
 



 
Figure 5.  Bootstrap Coefficient vs. A 

 
 

3.8 Neutral Beam Injection (NBI) Energy 
 
Beam power deposition calculations were performed for cases which bracket the size, aspect ratio 
and density of interest. Based on this information it was determined that the required beam energy 
to give parabolic-like deposition profiles with tangential injection at R0 can be approximated by: 
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where the beam path length Lb is the beam distance to the plasma axis: 
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3.9 Current Drive 
 
The current drive efficiency parameter is defined as follows: 
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where: 
 
γCDMAX = maximum efficiency in units 1020Ampere/Watt-m2 
n20 = electron density in units 1020Ampere/Watt-m2 

ICD = current to be driven in MA 
PCD = current drive power in MW 
 
Data for current drive efficiency from Start and Cordey [8] was curve fit with the following 
result: 
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"CD = Enbi

0.5327
(-8.471x10-4 +1.852x10-3Tavg - 5.307x10

-5Tavg
2 )  



 
where: 
 
Enbi = neutral beam energy 
Tavg = average electron temperature (simple average, not density weighted) 
 
The current to be driven is Ip*(1-fBS), and the current drive power (MW) requirement is therefore: 
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where ne is the electron density. Neutral beam injection (NBI) is assumed to provide the auxiliary 
heating power (Paux) and current drive power. The solver is constrained in such a way that 
γCD≤ γCDmax and PCD ≤  Paux.  
 
3.10 Density 
 
Line average electron density is related to the fraction of Greenwald Limit [9] fGW as follows: 
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Electron density (volume average) is: 
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Helium ash density (volume average) is calculated as follows. For power balance, total power 
into the plasma equals power out : 
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where: 
 
Pα = power in α particles  Paux = auxiliary heating power 
Prad = radiated power   Pfusion = total fusion power 
Q = fusion power gain    frad = radiation fraction = Prad/Pα 
W = stored energy   τE = energy confinement time 
 
For α particle balance, the rate of α production from fusion reactions must equal the rate of α 
particle loss: 
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where: 
 
Wα = energy per α particle, equal to 3.52MeV*1.6x10-13Joule/MeV=5.63x10-13Joule 
τ*

p= α particle confinement time after adjusting for recycling 
 
 
The stored energy is related to the pressure as follows: 
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Rearranging the prior three equations yields the following for helium ash density: 
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The ratio τ*

p/τE is an input variable typically assumed equal to 5.0. For impurities, Be is typically 
assumed the dominant species (Zimp=4) at a concentration fimp = 6%. For charge neutrality, with 
Z=2 for He: 
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ne = nDT + 2nHe + Zimpnimp  
 
The impurity density (volume average) is: 
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nimp = ne * fimp  
 
The density (volume average) of H species (D and T) is then calculated as follows: 
 

! 

nDT = ne 1" fimpZimp( ) " 2nHe  
 

The total particle density (volume average) is then: 
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3.11 Separate Ion and Electron Power Balance 
 
Global power balance equates the net total input power to the stored energy divided by the energy 
confinement time: 
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A toggle is provided in the calculations which is used to select whether Ti=Te or not, in which 
case the ion and electron power balances are treated separately. For the case when they are treated 
separately, for the electrons: 
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where the “_e” notation denotes electron quantities, and Pie is the power transfer from ions to 
electrons. Similarly for the ions: 
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Note that the radiation term is included for the electrons only, and the Pie term is additive for the 
electrons and subtractive for the ions. Solution of the above relies on expressions which estimate 
the partitioning of the alpha and auxiliary power to the ions and electrons, along with an 
expression for Pie. 
 
3.11.1 Neutral Beam Heating of Ions and Electrons 
 
Including collisions with both electrons and background ions, the slowing down of a beam ion 
with energy Enbi is given by: 
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where the first term in the square parenthesis is due to collisions with electrons, and the second 
term is due to collisions with ions, and τse is the slowing down time of electrons.   For a deuterium 
beam injected into a 50/50 D-T plasma, the “critical” beam energy Ecrit (at which the two 
contributions are equal) is given by Goldston and Rutherford [10]: 
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More generally, in a D-T mix with a tritium fraction fT, then the critical energy is: 
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Where M is the average atomic mass number: 
 

! 

M = 3 fT + 2(1" fT ) = fT + 2 
 
The auxiliary heating power density going into the electrons can be expressed in terms of an 
integral over beam energies, as follows: 
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where the integral runs from Enbi = 0 to Enbi = Einj.  This integral can be evaluated in the two 
limiting cases Einj /Ecrit >> 1 and Einj /Ecrit << 1, but these two limiting expressions are not very 
good at intermediate values of the parameter Einj /Ecrit, which are characteristic of actual CTF 
cases.  We have evaluated the integral numerically for such cases, and we find that a good fit is 
given by the expression: 
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which is accurate to within 2% over the range Einj /Ecrit ≈ 0.5 – 5.0. Obviously it follows that: 
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We calculate Ecrit, Paux_i, and Paux_e as a function of Te for each beam species and numerically 
integrate over the profile.  
 
3.11.2 Alpha Heating of Ions and Electrons 
 
Although alpha particles will heat mainly electrons, the small direct contribution to ion heating 
may be significant if the ion energy confinement time is very long. The derivation is similar to 
that for the beam ions presented above, and the alpha heating power density to electrons is given 
by: 
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where Eα0 = 3.5 MeV, and the integration runs from Eα = 0 to Eα = Eα0.  The alpha heating power 
density to ions is then given by: 
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P" _ i = P" # P" _ e  

 
For alpha slowing-down in a 50/50 D-T plasma, we have: 
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More generally, in a D-T mix with a tritium fraction fT and M= fT +2.0 the critical energy is: 
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The above integral for Pα_e can be evaluated in the limit Eα0 >> Ecrit. We obtain: 
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Again, we calculate Ecrit, Pα_i, and Pα_e as a function of Te and numerically integrate over the 
profile.  

 
3.11.3 Ion-Electron Equilibrium 
 
The power per unit volume transferred from ions to electrons by Coulomb collisions in a 50/50 
D-T plasma is given by: 
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More generally, in a D-T mix with tritium fraction fT and M= fT +2.0, the power transfer is: 
 

! 

P
ie

=
1.375

M

" 

# 
$ 

% 

& 
' n20

2
T
i _10

(T
e _10( )

T
e _10

1.5
        (MW/m3) 

 
where n20 is the (electron) density in units of 1020 m-3, and each T10 is a temperature (simple 
temperature, not density weighted) in units of 10 keV, i.e., T10 = T(keV)/10. Again, we calculate 
Pie as a function of ion and electron temperatures and numerically integrate over the profile. 
 
3.12 Temperature 
 
The ion and electron temperatures and densities are related to the pressure as follows: 
 

! 

P = nT 1.6 "10#19( )  
with 1.6 x 10-19 Joule/eV. 
 
We numerically integrate the ion and electron temperature, density, and pressure profiles to 
determine their peaking factors (PF, peak to average ratios) based on the specified functional 
forms. Then we know that: 
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With PF_p and PF_n determined we can then back out the peak temperature as follows: 
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The above calculation is performed separately for the ions and electrons.  
 
3.13 Radiation 
 
The effective ionic charge Zeff is: 
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Power loss (MW), assumed to arise exclusively from Bremsstrahlung radiation is: 
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3.14 Alpha Power 
 
3.14.1 Thermal Ion Fusion 
 
Alpha power due to “thermal” ions in a 50:50 D-T mix is calculated per the following integral 
from Hively [11]: 
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where: 
 
a0 = -23.836  
a* = -22.712  
a1 = -0.09393  
a2 = 7.994e-4  
a3 = -3.144e-6 
 
More generally, in a D-T mix with tritium fraction fT: 
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3.14.2 Two-Component Beam-Target Fusion 
 
The basic data on the energy-multiplication factor QTC for “two-component” reactions 
between injected deuterium ions and a pure-tritium background plasma is based on work 
by Jassby [12] which gives data for temperatures up to 20 keV for cases with Ti = Te , as 
well as data for Te = 50 keV and Ti = 0, to which an approximate finite-Ti correction fit 
can be applied. Curve fits were generated to match figure 18 from the Jassby paper for Ti 
= Te and to extend the curves from 400keV out to 1MeV. These are applied to the work 



reported herein despite the fact that the Ti = Te equality is not enforced. This is justified 
on the basis that the primary dependency is on Te alone. For Eb up to 400keV the equation 
form is based on that in the NRL Plasma Formulary [13] which uses the Duane 
coefficients to compute fusion cross sections: 
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This was modified as follows: 
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The modification brings the form closer to that associated with the calculation of Qb as reported 
by Jassby, and was found to provide very tight fits with the Jassby figure. In order to cover the 
range of Te it was necessary to use another level of curve fitting for the coefficients A1 through A5 
as a function of Te . The equation form used was: 
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The coefficients were determined by least squares curve fitting to the set of points taken manually 
from the Jassby figures. The results are given in table 1. 
 

Table 1. Beam-target fusion coefficients  
A0 0.0010 
A10 51.713 
A11 -0.191 
A20 50202.423 
A21 1.483 
A30 0.009 
A31 0.417 
A40 -0.250 
A41 1.164 
A50 -1323.179 
A51 0.144 

 
In order to extend the results out to 1MeV it was assumed that Q should go roughly as Qb_E>400keV  
= Qb_E=400keV*400/ Eb. Curve fit results are shown in figure 6. 
  



 
Figure 6.  Fits to beam-target energy multiplication curves 

 
The total fusion power from two-component reactions due to NBI into a 50:50 DT mix is 
obtained by integrating over the plasma volume: 
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Where the factor 1/2 arises from the fact that only 50% of the target ions are of the species 
opposite to the injected species.  
 
3.14.3 Integration of Fusion Power Over Plasma Volume 
 
As depicted in figure 7, the incremental volume ∆V is: 
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where R is the radius from the plasma center at R0. 
 

 
Figure 7.  Profile Integration 

 



3.15 Plasma Stored Energy 
 
The plasma thermal energy is: 
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3.16  Energy Confinement Time 
 
Three versions of the energy confinement time are calculated, namely neoclassical, ITER 89 
scaling, and ITER 98[y,2] scaling [14]. When the calculations are performed in the mode where 
Ti=Te, the ITER 98[y,2] scaling is used for the ions and electrons. Otherwise the ion confinement 
is assumed neoclassical and the electrons per ITER 98. The ITER 89 scaling is calculated and 
reported but not otherwise used.  
 
For the ITER 98[y,2] scaling:  
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where 

! 

ne19  is the line average electron density in units 1019/m3 and M is the average mass 
number, equal to 2.5 for a 50:50 DT mix. 
 
For the  ITER 89 scaling: 
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To develop a simple approximation for the neoclassical ion energy confinement time it is 
important to take aspect ratio effects into account, since the approximation a/R << 1, which may 
be valid for tokamaks, is certainly not adequate for STs.   However, it is less important to take 
account of neoclassical regimes other than the lowest-collisionality “banana” regime, since the 
topic is of interest only for high-Ti cases where the parameter ν*i is very small.   The neoclassical 
formulation most suited to this case is that by Chang and Hinton [15], and we use this 
formulation for the ion thermal conductivity χi. 
 
In an actual case, even when χi is given, the energy confinement time will depend on the profile 
of net heating power.   For present purposes, we choose to ignore this dependence and simply 
obtain a generic characteristic expression for the ion energy confinement time τEi.   We do this by 
assuming an essentially constant χi and then treating the heat transport equation as if it were a 
diffusion equation of the form  D∇2T + T/τEi = 0  which, for cylindrical geometry, has Bessel 
functions J0(λr) as solutions with the eigenvalue τEi then arising from setting λa = 2.4, i.e., the first 



zero of J0. For the “constant” value of χi, we take the actual value evaluated at r/a = 0.5, assuming 
the reference plasma profiles.   We assume an aspect ratio R/a = 1.5 so that χi is calculated at r/R 
= 0.33 (the parameter δ in the Chang/Hinton paper).   We assume a 50/50 D/T plasma.  
 
On this basis, we obtain the following final expression for the ion energy confinement time: 
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Here, Ip is the plasma current in MA, <Ti> is the average ion temperature in keV, <n20> is the 
average density in units of 1020 m-3, and A = R/a is the aspect ratio.   The factors Cκ, CZeff and Cplat 
are correction factors to take into account the effects of elongation, impurities and the banana-
plateau transition, respectively. 
 
The neoclassical confinement time in the banana regime goes like the square of the poloidal flux 
within the plasma.   As the elongation is increased at fixed toroidal field and fixed q-value, the 
poloidal flux increases, but so does the plasma current, with the result that most of the effect of 
elongation is already included in the above formula through the dependence on Ip.   In fact, the 
plasma current increases with elongation somewhat more rapidly than the poloidal flux, with the 
result that a correction factor: 
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should be applied.  This correction factor will be important only at fairly large elongation. 
 
Simplistically, the effect of impurities would be taken into account by simply increasing the ion-
ion collision frequency by Zeff, which would correspond to CZeff = Zeff

-1.  However, a later paper by 
Chang and Hinton [16] shows that impurities typically have a stronger effect on the transport 
because the impurity ions tend to be in a higher collisionality neoclassical regime.   These results 
can be approximated by taking: 
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Most cases of interest would seem to be deeply into the banana neoclassical regime, since the 
value of ν*i is very small. However, if banana-plateau transition effects are significant, they would 
tend to increase the confinement time by a small factor. The Chang/Hinton paper gives a 
correction factor: 
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and a representative value of ν*i is given by: 
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3.17 Confinement Enhancement Factor 
 
A confinement enhancement factor HH is introduced and used in the power balance equations as 
follows: 
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So, the effective confinement time is: 
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3.18 Fast Ion Effects 
 
In addition to the pressure resulting from the “thermal” DT ions, additional partial pressures 
result from the alpha particles and the beam ions. These all add to the pressure which is taken into 
account in determining the total effective beta values which are compared by the solver to the 
allowable beta limits.  
 
3.18.1 Alpha contributions 
 
An individual alpha-particle will give up its energy Eα according to the relation  dEα/dt = - 
Eα/τslow_α, where τslow_α is the energy “slowing-down” time due to collisions with electrons.   If Pα 
is the alpha-particle heating power density in MW/m3, the stored energy density in alphas is then 
given by: 
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The energy slowing-down time for alpha particles is given by:  
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where T10 is the electron temperature in units of 10 keV, and n20 is the electron density in units of 
1020 m-3.  (For alphas, atomic mass Aα= 4 and charge Zα= 2.  In the underlying physics, we have 
taken ln Λ ≈ 18.)   
 
We calculate the stored energy as a function of density and temperature and numerically integrate 
over the profile.  
 
With the stored energy density in MJ/m3 and the toroidal field strength in Tesla, the alpha 
contribution to toroidal beta is: 
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3.18.2 Beam ion contributions 
 
Including collisions with both electrons and background ions, the slowing down of a beam ion 
with energy Eb is given by: 
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where the second term in the parenthesis on the right is due to collisions with ions.   For a 
deuterium beam injected into a 50/50 D/T plasma, the constant C ≈ 64 (see Goldston and 
Rutherford [10]. Thus, for electron temperatures in the range 10-15 keV, the “critical” beam 
energy Ecrit (at which the two contributions are equal) is in the range 160-240 keV.  Above Ecrit, 
the beam ions will slow down mainly by collisions with electrons and, below this energy, mainly 
by collisions with ions. From the above expression for dEnbi/dt, the equilibrium “slowing-down” 
velocity distribution of beam ions can be derived.   Multiplying by beam energy and integrating 
over all velocities, the stored energy density in the beam ions can be obtained.   However, the 
integrals cannot be done analytically except in the two limiting situations where electron 
collisions or ion collisions are by far predominant.   A simple formula for the beam stored energy 
that fits exactly to these two limiting cases, and which is expected to be reasonably good in 
intermediate cases also, is as follows: 
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Here, Enbi is the beam injection energy and τslow_nbi is the slowing-down time for beam ions by 
electron collisions, given by: 
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We calculate the stored energy as a function of density and temperature and numerically integrate 
over the profile. Finally, the beam contribution to toroidal beta is: 
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4. Engineering Algorithms 
 



In this section we present engineering algorithms in two parts. First for a pulsed 
experimental NSTX-like device with copper magnets and second for a CTF-like steady 
state D-T reactor. 
  
4.1 Engineering Algorithms for Pulsed Copper Machine 
 
We are concerned with the heating and mechanical stress in the coils located in the 
narrow central core of the device, as well as the flux available to induce plasma current.  
 
4.1.1 Waveform Assumptions 
 
As shown in figure 8, we assume a pulsed scenario where the central solenoid (CS) is 
driven as rapidly as possible to an initial value of current, then ramped through zero to 
generate plasma current up to the “start of flat top” (SOFT), then (if we assume solenoid 
flux is required during plasma flat top) further ramped until the “end of plasma flat top” 
(EOFT), then ramped down. Ramp rates are specified according to typical operating 
experience. We assume that the TF coil is driven as rapidly as possible to flat top current, 
then held at flat top for the full duration of plasma current, such that the TF is at full field 
for the entire non-zero plasma current duration. Rise times for the CS and TF are based 
on L-R circuit behavior with realistic power supply parameters.  
 

 
 

Figure 8. Current waveforms for pulsed machine 
 
The XL solver calculates the J2T integrals of the above TF and CS waveforms and can 
adjust, among other things, the values of first swing and second swing CS currents in 
order to optimally satisfy the demand for magnetic flux while not overheating or 
overstressing the conductor.  
 
4.1.2 Conductor Heating 
 
We use the “G” function approach described as follows, and develop it for both copper 
and beryllium copper conductor materials.  



 
Let: 
 
ρ

e = electrical resistivity 
ρ

e0
 = electrical resistivity at temperature t0e 

T = temperature 
α = temperature coefficient of resistivity 
ρ

e = ρ
e0 (1+α(T-T

0
)) 

ρ
d
 = density 

C
p
 = specific heat = f(T) 

J  = current density 
t = time 
 
Then for an adiabatic conductor: 
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Rearranging and integrating results in the G function: 
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Curve fits were used to develop G functions for Cu and BeCu over the temperature range 
80oK to 473oK (200oC). These are of the form: 
 

! 

G(T ) = g
0

+ g
1
T + g

2
T
2

+ g
3
T
3 

 
Coefficients are given in table 2. 
 

Table 2. Coefficients for G Function 
 Cu BeCu 

g0 -5.641e16 -1.681e16 
g1 8.859e14 2.169e14 
g2 -1.963e12 -1.498e11 
g3 1.779e9 3.760e7 

 
On this basis the conductor current density J which is allowable given a temperature limit 
T can be determined as follows: 
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Within the conductor pack the packing fraction is defined as follows: 
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Then the current density has an average value of: 
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Javg = JKpf  
 
The G function can also be used to estimate the temperature of the conductors at any 
value of J2t as follows: 
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Curve fits were used to develop inverse G functions for Cu and BeCu. These are of the 
form: 
 

 
Coefficients are given in table 3. 
 

Table 3. Coefficients for G-1 Function 
 Cu BeCu 

xg0 82.96 81.45 
xg1 9.020e-16 5.371e-15 
xg2 1.794e-32 6.918e-33 
xg3 5.585e-50 3.769e-49 

 
4.1.3 Mechanical Stress in Coils 
 
a. Central Solenoid 
 
We estimate via Roark & Young [17] the peak hoop stress in the solenoid which occurs 
at the bore as follows: 
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where: 
 

Ro = outer radius of conductor pack 
Ri = inner radius of conductor pack 
ν = Poisson’s Ratio 
 
Here B is the (constant) field within the bore of the coil: 
 

 
Where ff is the form factor which accounts for the finite length ∆Z of the coil: 
 

 
We limit the peak stress to an appropriate allowable value. Note that a more rigorous 
approach would calculate combined stress (e.g. Von Mises or Tresca) including effects 
from nearby PF coils and the plasma. However, the approach described is considered 
adequate for parametric studies.  
 
b. Toroidal Field Inner Leg 
 
We consider the stresses arising from the axial current flow in the bundle, and assume 
that forces generated on the radial currents in the outer return path are shunted from the 
inner leg by dedicated mechanical support structures. Tri-axial and combined (Von 
Mises) stresses are computed as follows: 
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where: 
 
r = radius within conductor    
a = outer radius of conductor 
ν = Poission’s ratio       
Bmax = B at  r=a, Bmax = µ0ITF/2πa 
 
We note that the shear in the insulation between turns due to torsion arising from JxB 
forces between TF current and CS radial field can be an important and limiting factor. 
However we have not developed an algorithm for it at this time since it involves the 
structural support system and is probably too complex to represent in parametric studies.  
 
4.1.4 Solenoid Flux Requirement 
 
The formulation developed by Hirshman and Neilson [18] is used to estimate the flux 
requirement: 
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where: 
 
li is the internal self-inductance per unit length 
Δtflat is the flattop time 
CE is the Ejima coefficient 
 
and: 
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Depending on the assumptions specified for non-inductive current drive, the solver sets 
the solenoid flux requirement to some fraction of the ramp and flat top flux as computed 
above.  
 
4.2 Engineering Algorithms for Reactor 
 
For a steady state reactor (e.g. CTF) we assume a solenoid-less configuration with single 
turn TF, non-inductive current drive using NBI, high power divertor exhaust, tritium (T) 
breeding blanket, and electricity production. 
 
4.2.1  First Wall and Toroidal Field Inner Leg 
 
The first wall thickness requirement ΔRfw is driven by compromises between ohmic power 
dissipation, nuclear heating, and neutron damage to the center post (and frequency of 
replacement). For the work reported herein the thickness was assumed 6 cm for the CTF mission 
based on the Culham VNS study[19], and 20cm for reactor missions based on the ARIES-ST 
study[20], so the radial build of the TF inner leg in the midplane region is: 
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The radius of the inner leg in the end regions was set to: 
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The height of the narrow middle region of the inner leg above the midplane is assumed equal to 
90% of the height of the plasma.  
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The total TF height is taken to be equal to the plasma height plus 4.0m, allowing for divertor, 
blanket, and shield: 
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Glidcop AL-25 material, σ=87% IACS, was assumed for the inner leg, based upon its radiation 
resistance, consistent with the ARIES-ST.  The inner leg is modeled using 8 sections as depicted 
in figure 9, with water flowing in one end and out the other, heating up as the sections are 
traversed.  
 
A water inlet temperature of 35oC and flow velocity of 10m/s were assumed.  The fraction of 
cross section containing water is chosen by the optimizer. The number of water passages per unit 
area is assumed equal to 500/m2, similar to ARIES-ST, but less than prior VNS [21] studies 
which were of order 2000/m2. Thus with the water cross sectional area and number of passages 
specified the wetted perimeter of the cooling passages is determined. 
 
 



 
Figure 9.  TF Inner Leg 

 
 
In addition to ohmic dissipation, nuclear heating is added at a rate equal to the average neutron 
wall loading times the surface area. This is conservative because 1) much of the heating would be 
received and removed or radiated via the first wall armor, and 2) the Cu is partially transparent to 
the neutrons. The flaring is set to 60o with respect to horizontal, with the flaring starting at 90% of 
the plasma height.  
 
The thermal resistance due to the film effect and the mass flow are computed, using water 
properties which are computed as a function of temperature. Limits on copper and water 
temperature were typically set at 150oC. 
 
Stresses in the inner leg are computed using the same formulation as for the pulsed 
machine. Vertical tension is assumed equal to zero, which is consistent with the use of sliding 
joints at the interface between the vertical center post and radial current paths to the return circuit. 
However the above result was multiplied by a factor of 2.0 to account for the cooling passages in 
the conductor. An appropriate limit for Glidcop at 150oC is 100MPa. 
 
4.2.2 Toroidal Field Outer Leg Return 
 
As depicted in figure 10 the TF current is assumed to be returned through the outer VV shell 
which is constructed of aluminum, consisting of horizontal lids and vertical cylindrical sections. 
This is similar in concept to the VNS and ARIES-ST designs. The thickness of the horizontal 
sections and vertical sections is set to 0.6m.  
 
Dimensions of the outer leg return circuit are chosen based on the following radial builds beyond 
the outboard plasma edge: 
 
 



SOL and gap  0.10m 
First wall  0.05m 
Blanket   0.5m 
Shield    0.7m 
Gap   0.1m 

 
 

 
Figure 10.  TF Cross Section, showing Inner Leg, Outer Leg Return,  

and Space Allocation for First Wall /Blanket/Shield  
(R0=1.5m,A=1.5,κ=3.0,δ=0.4) 

 
Dimensions are similar to those used for ARIES-ST, and are sufficient to handle 7.5MW/m2 
neutron flux on the outboard midplane and to protect the organic insulating materials of the outer 
PF coils. For a CTF with lower power flux and lower fluence, a shield thickness of approximately 
1.0m would be required to permit hands-on access. Future work should address this issue and 
determine the optimum shielding considering the actual CTF loading scenarios and access 
requirements related to the use of blanket test modules. 
 
4.2.3 Determination of Toroidal Field, Current, Input Power 
 
The optimizer adjusts the current density in the TF inner legs along with the fraction of cross-
sectional area containing water (fW) to adjust BT according to: 
 

! 

ITF = JTF"R
2

TFmid 1# fW( )  
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0
I
TF
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0

 

 
Total TF power consumption is equal to the sum of the dissipation in the inner and outer legs 
divided by the efficiency of the power supply system, assumed to be 90%: 
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P
TF

=
P
inner

+ P
outer

"
TF

 

 
Further work is needed to establish the details of the ultra-high current TF power supply and 
confirm that reasonable efficiencies can be obtained. 
 
4.2.4 Poloidal Field Requirements 
 
A switch in the spreadsheet is used to select copper PF coils or superconducing. If copper, their 
total current is assumed equal to the plasma current. Current density is assumed to be JPF = 
5.0x106 amp/m2. Their inboard edge is assumed to be 0.4m beyond the outboard edge of the VV. 
Power supply efficiency is taken to be 95%. With these assumptions the power dissipation in the 
PF coils is computed.  
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If superconducting the PF input power is assumed equal to zero. Refrigeration power 
requirements are assumed lumped with balance of plant power. 
 
4.2.5 Divertor and First Wall Heat Loads 
 
The power in the scrape-off layer is: 
 

! 

PSOL = P" + Paux # Pbrem # Pline  
 
For the work described herein the cyclotron radiation is neglected and the line radiation is 
assumed equal to the bremsstrahlung radiation plus additional radiation of the power leaving the 
core of the plasma via Ar introduced into the core to enhance radiation.  
 
Algorithms to estimate the divertor heat loads were developed from equilibrium calculations. The 
divertor configuration flux expansion, for reasonable divertor geometry assumptions, is found to 
follow: 
 

! 

"div = "midplane # 7.5a  
 
where a is the minor radius, and λ is the e-folding of the heat flux in the scrape off layer.  Then 
the power into the scrape off layer can be related to the peak heat flux by 
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PSOL =Qdiv " 4# (R +
a

4
)$div  

 



where Q is the peak heat flux  This is assuming particle heat load only.  If we now include 
radiation in the divertor, we get two terms, and solving for the peak heat flux: 
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P
div

= P
SOL

" P
div,rad

 
 

! 

Qdiv = Pdiv, rad /(8"Ra) + Pdiv /[4" (R +
a

4
)#div] 

 
Note that the 8πRa = 2(2πR)2a is the divertor area, based on actual geometric layout studies. The 
inputs are the midplane scrape off layer e-folding at the midplane (assumed equal to 1.0cm) and 
the divertor radiation fraction.  In addition, to the calculation of the peak heat flux in the divertor, 
we must calculate the surface heat flux on the first wall, since its capability is typically much less 
than the divertor.  So the first wall heating is given by… 
 

! 

PFW = Pbrem + Pline

QFW = PFW " f peaking /AFW

 

 
The solver equations are designed to adjust the radiation fraction at the divertor as well as the 
core radiation to suit the engineering allowable peak heat flux. Solver solutions are valid if both 
the divertor peak heat flux and the first wall heat flux are within limits. The following constraints 
are typically applied: 
 

Allowable peak heat flux at divertor = 15.0 MW/m2 
Maximum radiation fraction at divertor = 90% 
Allowable peak heat flux at first wall = 1.0 MW/m2 

Maximum core radiation fraction = 60% 
Minimum core radiation fraction = 60% 

 
4.2.6 Neutron Wall Loading 
 
Average neutron wall loading is based on the surface area of the plasma: 
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X
N _ wall
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A
=
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R
0
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4.2.7 Blanket Coverage 
 
The area available to the blanket is reduced by ports which are required for NBI and other 
purposes. It is assumed that tangential NBI ports are located on the midplane and that tangential 
injection is accomplished via horizontal beam lines. In addition it is assumed that one radial port 
each is reserved for RF and Diagnostics. Other ports which can contain blanket test modules are 
assumed radial and of the same dimensions as the RF and Diagnostics ports. It is assumed that all 
of the midplane ports have the same height which is taken to be at least 1.0m, or: 
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The preferred port height, 1/3 of the plasma height, is judged to be a reasonable value which 
provides significant access to the high neutron flux zone of the plasma. However, in recognition 
of the need for remote handling access to the port flanges for cask attachment, etc., it is judged 
prudent to reserve 1.5m from the top of the plasma (where an outer PF coil will be located) to the 
top of the port.  
 
4.2.7.1 NBI Port Requirements 
 
For the high energy NBI envisioned (E

! 

nbi  > 200keV) negative ion injection methods are required, 
and the current density achievable through the NBI duct is assumed limited to J

! 

nbi=40A/m2. This 
is based on JT-60 experience [22] with negative ion NBI which has targeted 10MW injection at 
500keV through a duct of dimensions 1.1m x 0.45m. Knowing the NBI power and energy (equal 
to voltage for D and T ions) the total duct area and width can be determined as follows: 
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and: 
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"zport
 

 
A maximum NBI duct width of 1.25m is assumed. Then the minimum number of NBI ports is: 
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and the actual duct width is: 
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From simple geometry considerations, and assuming that the NBI aims at R0, it can be shown that 
the tangency angle, chord and angle corresponding to the NBI duct at the outboard first wall 
radius, assuming 15 cm gap from outboard edge to first wall are: 
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4.2.7.2 Radial Port Allocations and Dimensions 
 
It is assumed from practical considerations that all radial ports are 1.0m wide, such that the angle 
corresponding to each port is: 
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From the above, the maximum number of radial ports can be determined: 
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If two ports are reserved to RF and Diagnostics, then the remaining ports would be available, e.g., 
to blanket test modules, and the total available blanket test module area would be: 
 

! 

Ntm _ max = Nport " 2  
 

! 

Atm _ max = Ntm _ max"zport"wport  
 

4.2.8 Neutron Flux Distribution and Area Weighting 
 
a. Center Stack 
 
The fraction of neutrons incident on the narrow midplane region of the center stack is: 
 

! 

fCS =
" #sin$

2%
 

 
where φ and θ are angles in the toroidal and poloidal planes which correspond to the intersection 
of a cylinder (the center stack) and a unit sphere with center at the effective average point source 
of neutron production, which is assumed located a distance a/3 beyond R0. See figure 11. The 
angles φ and θ are: 
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where Rfw is the radius of the first wall and ∆Ztfmid is the height of the narrow midplane section of 
the center stack. 

 
 

 
Figure 11. Calculation of Solid Angle of Center StackOutboard Blanket 

 
b. Data from the ARIES-ST studies [23] by El Guebaly provide neutron flux distribution on a 
cylindrical blanket extending up to the plasma height κ*a, in terms of normalized neutron flux as 
a function of normalized height. The former normalization is w.r.t. machine average n flux (based 
on the total plasma facing surface), the latter w.r.t. plasma height. In addition from the ARIES-ST 
studies (A=1.6) the ratio of the neutron flux on the outboard blanket was equal to 4.6/3.3=1.39 
times the machine average, with the machine average based on the total plasma facing surface. 
This information was used to estimate neutron flux distribution and weighting functions as 
follows. 
 
The data from El Guebaly was scaled and curve fit to the following function: 
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This function has an integral of 1.0, which means that it represents the flux as a function of z, 
normalized to the average over the cylindrical blanket.  
 
c. Overall Accounting of Neutron Flux 
 
The total plasma facing surface area Apfs is assumed to consist of that of a cylinder of height z=+/-
κ*a at the outboard first wall radius Acyl, a center stack represented by a cylinder down the middle 
at the inboard first wall radius Acs, and lids top and bottom representing the divertor regions Adiv.  
 



Given the prior result concerning the fraction of neutron flux incident on the center stack fcs, a 
weighting function applied to the center stack area is: 
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Wcs = fcs
Apfs

Acs

 

 
Similarly, for the cylindrical outboard blanket, given the ARIES ratio of 1.39,  
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Wcyl =1.39
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Acyl

 

 
Finally, for the divertor regions since ∑WiAi/Apfs = ∑Ai/Apfs= 1.0: 
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Wdiv =
Apfs "WcsAcs "WcylAcyl
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d. Neutron Flux to Blanket and Test Modules 
 
With the weighting functions established, the equation for neutron flux to the outboard region can 
be modified to reflect same as follows:  
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This function gives the weighted flux dependency on z. For the radial ports which extend up to 
z=+/-ΔZport/2 the average of this function from z=0 to z=ΔZport/2 represents the weighting of the 
port area. Since ∫x(1-z2/y2)dz=x(z-z3/(3y2) it follows that the weighting function for the port area 
is the running average: 
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Where z is the normalized height of the port: 
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zn =
"Zport

2#a
 

 
Figure 12 shows the original data from El Guebaly (“NWL p.u.”), the scaled version with 
integral=1.0 (“NWL/avg”), the curve fit, the running average of the scaled data, and running 
average of the fit data.  
 



 
Figure 12. Outboard Neutron Flux Data 

 
Thus the total effective area of Ntm test module ports, each of area Δzport* Δwport is: 

 

! 

Atm _ eff = NtmWport"zport"wport  
 

Finally, the total available effective blanket area is the total plasma facing surface area minus the 
effective areas of the divertor, center stack, and ports for the NBI, RF, and Diagnostics. This 
assumes that all of the test module radial ports are available for blanket purposes. 
 

! 

Ablanket = Apfs " WcsAcs "WdivAdiv "Wport#zport (2#wport + NnbiCnbi)[ ] 
 

Where Cnbi is the width of the chord corresponding to the NBI port. Then the fraction of the 
neutrons which reach the blanket is: 
 

! 

fblanket =
Ablanket

Apfs

 

 
4.2.9 Gross Thermal Power 
 
Electricity production is assumed derived from the power in the fusion neutrons and the radiated 
power to the first wall. This includes energy multiplication which takes place in the blanket due 
to reactions involving the neutrons and the Li isotopes. The calculation includes a toggle to select 
whether or not energy flow through the SOL to the divertors is recovered. Other “balance of 
plant”  low grade heat such as dissipation in the magnets, pumping power, etc., is not recovered. 
 
Then the total useful thermal power is: 
 

! 

Pth = Pneutron fBEM + P" + Paux( ) f rad[ ] fblanket + kdivPdiv  
 

where: 
 
fblanket = fraction of surface area covered by blanket  
fBEM = blanket energy multiplication factor (assumed =1.2)  



 
4.2.10 Electric Power Consumption or Production 
 
The calculation includes a toggle to select whether or not electricity is to be produced. If so, then 
with thermal to electrical energy conversion efficiency ηEC the gross electrical power production 
is: 
 

! 

Pgrosselec = Pth /"EC  
 

and the operation of the “balance of plant” is assumed to consume a fraction (fBOP=10%) of the 
gross electric power production. Otherwise the balance of plant power is assumed to be 20MW.  
 
The conversion efficiency is typically assumed 35% for “conventional” power conversion and 
45% for “advanced” power conversion” cycles.  
 
The net electric power production is: 
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Pnetelec = Pgrosselec " PBOP " PTFinput " PPFinput " Pauxinput  
 
 
4.2.11 Tritium Consumption 
 
The energy released per D-T reaction, which consumes one atom of tritium, is: 
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The mass of a tritium atom (atomic weight = 3) is: 
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Therefore the yield per unit mass is: 
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8
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So the tritium fueling rate per day is: 
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QT _ fueling =
Pfusion

6.54
gm /day   

 



For T breeding in the blanket, it is assumed that the blanket has a local T breeding ratio (TBR) of 
1.2, i.e. 1.2 T atoms are bred from each incident neutron. So the net fractional breeding ratio 
(FBR) is as follows: 
 

! 

FBR = fblanketTBR  
 

and the net T consumption is: 
 

! 

QT = FBR"QT _ fueling  
 
 
5.  Solver Operations 
 
Typically the Solver is set up to adjust the following variables to obtain a solution: 
 

frad, fGW, βN, qcyl, Pfusion, ηCD, JTF, fW 

 
In other cases more variables may be added to this list, such as R0 or A.  
 
In obtaining a solution the solver iterates to satisfy the following constraints which are required 
for a mathematically valid solution: 
 

1) Value of frad used to calculate τE, nHe, Ptot and subsequent dependent variables must be 
equal to ratio of calculated values Pbrem/Pα.  

2) Value of Pfusion used to calculate Q and subsequent dependent variables must be equal to 
calculated value 5*Pα.  

3) Value ηCD must be  ≤  ηCDmax (T) = 0.025<T> 
4) Value of PCD must be ≤ Paux 

 
The following additional constraints are applied to ensure that physics and engineering limits are 
realistic: 
 

1) βN ≤ βNmax 
2) qcyl ≥ qcylmin 
3) 0.1 ≤ fBS ≤ 0.99 
4) 0.1 ≤ fGW ≤ 1 
5) σTF ≤ 100MPa 
6) TTFCu ≤ 150C 
7) TTFH20 ≤ 150C 
8) 0.05 ≤ fW ≤ 0.25 

 
Additional constraints are sometimes added to limit the solution to a particular range of interest 
such as: 
 

1) HH = or ≤  an input value 
2) Nwall = or ≤ an input value 

 
A flow chart of solver operations is given in figure 13. 
 

 



 
Figure 13. Solver Flow Chart 



6. Sample results 
 
Summary results from typical calculations are given in table 4 for the following cases. 
 
NSTX:  Benchmark case 
CTF:   a. 1MW/m2 

b. 4MW/m2 
DEMO:  100MW net electric 
REACTOR: 1GW net electric 
 
The results listed represent the minimum major radius solutions which were found to 
satisfy all constraints. All cases are at A=1.5, κ=3.2 and δ=0.4. CTF cases are optimized 
to minimize P_aux. This is desirable in terms of minimizing cost and tritium consumption 
as well as maximizing available test module area. 
 



Table 4. Sample Calculation Results 
 NSTX CTF CTF DEMO REACTOR

Benchmark 1MW/m2 4MW/m2 100MW 1000MW

R0[m] 0.880 1.200 1.200 2.200 3.100

A 1.470 1.500 1.500 1.500 1.500

kappa 2.050 3.200 3.200 3.200 3.201

delta 0.430 0.400 0.400 0.400 0.400

qMHD 9.998 11.594 7.439 7.611 7.946

qcyl 3.25 3.98 2.55 2.61 2.73

qcyl/qcyl_min 126.7% 181.2% 103.2% 100.0% 100.0%

Bt[T] 0.490 2.548 2.548 2.144 1.899

fH20 19.5% 19.5% 13.0% 12.8%

TH20max[degC] 103.7 130.3 128.7 131.0

TCumax[degC] 120.7 150.0 139.8 137.9

Sigmax[MPa] 100.0 100.0 68.3 62.5

Javgtf[A/m^2] 2.4E+07 5.3E+07 5.3E+07 2.3E+07 1.7E+07

Itf[Amp] 2.16E+06 1.53E+07 1.53E+07 2.36E+07 2.94E+07

Ip[MA] 0.800 9.602 14.964 22.562 26.989

Beta_N_thermal 3.69% 3.44% 4.78% 6.12% 6.81%

Beta_N_total 6.97% 4.11% 6.06% 7.02% 7.83%

Beta_N/Beta_N(A) 101.7% 49.8% 73.4% 85.0% 94.8%

Beta_T_alpha 0.0% 2.4% 6.8% 5.3% 6.6%

Beta_T_nbi 8.9% 0.8% 2.6% 1.2% 0.4%

Beta_T_thermal 10.1% 16.2% 35.1% 43.9% 46.8%

Beta_T_total 19.0% 19.4% 44.5% 50.4% 53.8%

Beta_P 88.0% 102.7% 91.5% 119.7% 139.1%

xne 3.0E+19 6.6E+19 1.5E+20 2.1E+20 1.5E+20

fGW 45.0% 14.5% 21.3% 65.1% 83.9%

fBS 58.0% 67.1% 59.8% 78.2% 90.0%

Tempavg[keV] 1.0 21.3 20.3 13.1 15.3

Tavgi[keV] 1.2 33.8 28.0 14.0 16.4

Tavge[keV] 0.9 10.5 13.7 12.3 14.5

HH98 (global) 1.28 2.55 1.88 1.35 1.27

HHi_NC 0.70 0.70 0.70 0.70 0.70

HHe 0.67 0.70 0.70 0.70 0.67

Tau_E_NC[sec] 0.14 20.40 19.58 24.60 35.34

Tau_E_98[sec] 0.02 0.32 0.33 0.82 1.12

Q 0.0 4.1 8.2 28.3 112.1

Zeff 1.50 1.44 1.46 1.46 1.93

P_Brem[MW] 0.0 0.5 3.3 36.0 68.9

P_rad_core[MW] 1.2 7.4 21.0 65.1 118.1

P_aux[MW] 6.0 20.7 41.1 54.3 28.2

E_nbi[keV] 90.0 104.9 240.5 604.1 615.2

P_fusion[MW] 0.0 84.3 337.1 1536.8 3156.4

P_alpha[MW] 0.0 16.9 67.4 307.4 631.3

fTC 99.8% 22.9% 15.4% 2.4% 0.5%

Gamma_CD[10^20*A/W-m^2] 0.00 0.12 0.26 0.41 0.44

P_CD[MW] 38.7 20.7 41.1 54.3 28.2

Xnwall[MW/m^2] 0.0 1.2 4.9 6.7 6.9

Qn_wall[MW/m^2] 0.64 2.55 3.45 3.57

Qn_tm[MW/m^2] 1.00 4.00 5.97 6.17

Qn_om[MW/m^2] 1.14 4.58 6.21 6.42

Port Height (delta Z)[m] 1.78 1.78 3.27 4.61

#NBI Port 1 2 1 1

Available TM Area [m] 17.8 14.3 68.7 142.9

#Test Module Ports 6 6 4 3

A_cyl_blanket[m^2] 70.2 70.2 128.8 181.5

T fueling rate[gm/day] 12.9 51.6 235.1 482.8

fCS 7.3% 7.3% 7.3% 7.3%

fN 81.6% 75.9% 85.6% 87.5%

FBR 102.0% 94.9% 107.0% 109.4%

Net T consumption rate[gm/day] -0.25 2.62 -16.47 -45.34

n/s/W 1.0E+11 2.9E+11 1.3E+12 2.1E+12

frad_core 20.0% 20.0% 20.0% 20.0%

Q_fw[MW/m^2] 0.150 0.460 0.568 0.529

frad_div 48.7% 84.9% 83.2% 81.2%

Q_div[MW/m^2] 15.0 15.0 15.0 15.0

P_aux_input[MW] 59.2 117.4 155.1 62.6

!P_tf[MW] 165.6 171.6 197.3 249.9

!P_pf[MW] 0.0 0.0 0.0 0.0

P_bop[MW] 20.0 20.0 20.0 145.8

!P_elec input[MW] 244.7 309.0 372.3 458.3

P_elec gen[MW] 0.0 0.0 472.3 1458.3

P_net elec[MW] -244.7 -309.0 100.0 1000.0

Q_elec 0.00 0.00 1.27 3.18

Annual Elec Cost[$M] 45.0 56.9 -47.4 -474.4

Mass_TF_CS 1.6E+05 1.6E+05 6.2E+05 1.2E+06

Mass_TF_Outer 5.5E+05 5.5E+05 1.1E+06 1.7E+06

Mass_PF_Outer 5.1E+05 8.1E+05 1.7E+06 2.5E+06

P_Density[MW/m^3] 1.74 6.95 5.14 3.77  
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