
Control Room Accelerator Physics

Day 2
Introduction to Linear Algebra



June 23-27 USPAS 2

Outline
1. Introduction

2. Vector spaces

3. Matrices as linear operators

4. Eigenvalues and eigenvectors

5. Diagonalization

6. Singular-value decomposition

Presenter
Presentation Notes
Now we focus on design of accelerator control application
The feature requirements for these types of applications



Linear Algebra
Introduction

Linear algebra is the branch of mathematics concerned with the 
study of vectors, vector spaces (also called linear spaces), linear 
maps (also called linear transformations, linear operators), and 
systems of linear equations.

Here we will think of “linear algebra” loosely as matrices
Matrices are more “tangible”, 
They are computation friendly
Represent linear maps between finite dimensional vector spaces
(e.g., the space of correctors and the space of BPMs)

Our objective here is to review some basic facts about matrices 
and establish the notation
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Basic Notation
The set of real numbers (will also use boldface R)

The set of complex numbers 
Numbers of the form z = σ + iω, σ,ω real

The Cartesian product of the real line n times or the set of “n-tuples”
Vectors of the form x = (x1, …,xn)

The set of m×n matrices having real number elements

The set of elements in           having nonzero determinant 
These are the invertible matrices
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The Vector Spaces Rn

We can consider the space Rn as the natural extension of the more 
familiar 3-vectors in Euclidean 3 space.
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Matrices as Linear Operators
Maps Between Vector Spaces Rn

A linear map L has the defining property L(rx+sy) = rL(x) + sL(y) for 
vectors x,y and scalars r,s.

A matrix A in Rm×n is, in a natural way, a linear map between the vector 
spaces Rm and Rn under the usual matrix multiplication

Example: 
Elements of Rm are corrector magnet strengths
Elements of Rn are BPM readbacks
Then A in Rm×n is the response matrix

We note three important cases:
m > n The space Rm is “bigger” than Rn (more correctors than BPMs)
m < n The space Rm is “smaller” than Rn (more BPMs than correctors)
m = n The matrix A is square  (equal numbers of correctors and BPMs)
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Matrices as Linear Operators
Maps Between Vector Spaces Rn
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We can get to all beam positions.
But, there are many more corrector 
settings than necessary (and they 
can “fight” each other).  

Im A
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Case 2: m<n n

mWe cannot get to all the beam positions.  
We don’t have enough correctors.

n== A0A Im,ker
00

ACase 3: m=n
mn  =mWe can steer to all beam positions.  

Each has a unique corrector setting.



Matrices in Beam Physics
Matrices are Ubiquitous in Beam Physics

Determining the perturbations 
in the closed orbit of a ring 
when changing a dipole 
corrector values.
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Matrix Factorizations
Diagonalization and Singular Value Decomposition

Because matrices model important aspects of beam physics and 
control, it is instructive to look at their structure

We consider two methods of factoring a matrix, diagonalization and 
singular-value decomposition
Eigenvalues and eigenvectors are intimately related to 
diagonalization, which we also briefly cover

Each factorization allows the designer to decouple the effects of 
the inputs (e.g., corrector strengths) and outputs (e.g., beam 
positions)

We focus on response matrices throughout the discussion, 
however, the XAL online model provides transfer matrices 
between beamline positions, where this material is also valuable.
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Eigenvectors and Eigenvalues
The Natural Modes of A Matrix

For a square matrix A in Rn×n we can usually find special vectors 
e in Rn so that

Where λ ≠ 0 is a scalar (either real or complex)

Any such vector e is called an eigenvector of A
Any such scalar λ is called an eigenvalue of A

A does not change the direction of e, only the length!
A acts like an amplifier on e with gain λ
The {e} are the natural, uncoupled, modes of A (as a map)
What if we could decompose all of Rn into eigenvectors of A?
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Matrix Eigendata
Example: Response Matrix

Say we find an eigenvector e
for the response matrix A

Drive each dipole 
corrector DHi with the 
value of the eigenvector 
coordinate ei

Then each BPMi behaves 
as if it is directly 
connected to DHi

The response (beam 
positions) are simply 
amplified by the 
eigenvalue λ
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Matrix Diagonalization
Factoring into Natural Modes
Sometimes a square matrix A in Rn×n can be factored as 

Where T is in GL(n,R) and Λ = diag{λ1,…,λn} in Rn×n. 
Λ is called the spectral matrix (with spectrum {λ1,…,λn})
T is called the modal matrix
When this condition is satisfied, i.e., when A = TΛT−1, we say A is 
diagonalizable

The matrix T describes the coupling between the correctors and the 
BPMs.  
The matrix Λ describes the gains between these natural couplings 
For example….
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Matrix Diagonalization
Interpretation
Matrix diagonalization decouples our corrector space (Rn ) into the 

natural modes of the response matrix A
It is possible to inspect the eigenvalues and see which eigenvectors 
(natural responses) are most sensitive to changes in the correctors

It is possible to inspect T and see which BPMs are most strongly 
coupled to which correctors
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Singular Value Decomposition
Generalizing Diagonalization

Any matrix A ∈ Rm×n may be factored as follows:

A = UDVT

where U ∈ Rm×n, D = diag{σ1,…,σn}, V ∈ Rn×n

The numbers {σ1,…,σn} are the singular values of A
They may be any (complex) number, including zero!
They are generalizations of eigenvalues for square matrices

Matrix U and V have special properties
VTV = I ∈ Rn×n , that is, it is orthogonal
UTU = I ∈ Rn×n , that is, it is “partially orthogonal” 

(note UTU ∈ Rn×n , not Rm×m)
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Singular Value Decomposition
Generalizing Diagonalization

Returning to the corrector/BPM example with singular-value 
decomposition
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Clearly this situation is analogous 
to diagonalizable case, however…
We must be careful!
• There are outputs which are not 
connected?!
•Some singular values might be 
zero!

We have outputs {yi} that are unreachable!

This example was for the case where m<n, we have analogous results for m>n
(i.e., “dead inputs” and degeneracy)

SVD is an important part of Model-Independent Analysis in high-level beam control



Singular Value Decomposition
Conclusions

We can factor any matrix A ∈ Rm×n as A = UDVT

This factorization alone provides an enormous amount of intuition 
about your system represented by 

y = Ax

Matrix V tells you which inputs (i.e., the xi) are viable
Correctors that have an effect

Matrix U tells you which outputs (i.e., the yi) are active
BPMs that don’t respond

The diagonal matrix D provides …
The gains (i.e., the σi) for the system
Internal system degeneracy – zero singular value
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Linear Systems
A Preview

Linear Systems are again linear maps G
between vector spaces, but here the 
vector spaces are dynamic; that is, 
they contain functions.

The internal dynamics of linear 
systems can usually be described by 
matrix-vector differential equations 
of the form

This may look challenging but we 
can use all that we have learned here 
to “disassemble” the above
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Matrix Exponential
A Preview

Functions of (square) matrices are common in analysis 
For example,  sin(A), log(A), exp(A), for A ∈ Rn×n

These functions may seem strange, but they are well-defined by the 
Taylor series for the function (matrix powers are well-defined)

Of particular importance for us is the matrix exponential etA

The scalar t representing time
This function occurs frequently in linear (dynamical) systems

Again, say A is diagonalizable where A = TΛT−1

We shall see that etA = TetΛT−1

The exponential etΛ is easy to compute
etΛ = diag{etλ1,…, etλn}
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Linear Beam Optics
A Preview

Linear systems and the matrix 
exponential play a crucial part in 
linear beam optics and, consequently, 
the XAL online model

In linear beam optics beamline 
elements are modeled by matrices Φ

These matrices are formed from the 
exponential of another matrix G

The matrix G represents the 
equations of motion

The XAL online model is based upon 
these ideas
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Linear Algebra
Summary

Matrices can be treated as linear operators between finite 
dimensional vector spaces, in particular, the spaces Rn

A square matrix A usually has eigenvalues and eigenvectors that 
characterize the action of A upon vector space Rn

If a matrix A can be diagonalized as A = TΛT−1 then its action can 
be completely decoupled

Any matrix A ∈ Rm×n may be factored according to A = UDVT

where D is the matrix of singular values
This factorization, although not as straightforward, also characterizes 
the action of A upon Rn (and domain Rm)
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Supplementary Material

More details on Linear Algebra
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Matrix Diagonalization
Factoring into Natural Modes
Sometimes a square matrix A in Rn×n can be factored as 

Where T is in GL(n,R) and Λ = diag{λ1,…,λn} in Rn×n. 
Λ is called the spectral matrix (with spectrum {λ1,…,λn})
T is called the modal matrix
When this condition is satisfied, i.e., when A = TΛT−1, we say A is 
diagonalizable

Fact: If a square matrix A in Rn×n has n unique eigenvalues {λ1,…,λn} 
then it can be factored as above

In fact, a suitable T can be formed by augmenting all the 
eigenvectors as columns.  Specifically,
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Matrix Diagonalization
Interpretation
Matrix diagonalization decouples Rn into the natural modes of A

Instead of working in Rn, we work in the space T−1Rn !

To make this less abstract consider equation y = Ax and, for example,
Think of A as a multiple-input, multiple-output, coupled amplifier.
Instead of using parameters x and y, use ξ ≡ T−1x and η ≡ T−1y
Everything decouples as ξi = λiηi (transform back when you’re  done)

June 23-27 USPAS 23

Λξη
xΛTyT

xTTy

=
=

Λ=
−−

−

11

1 x1

x2

xn

y2

y1

yn

λ1

λ2

λn

T−1 Tx yΛξ η

T−1
n n1−T n

λ2
−1



Matrix Diagonalization
Special Case: Symmetric, Positive Definite Matrix
Fact: A positive-definite (λi > 0, for each i), symmetric (A = AT), 

square matrix A in Rn×n can always be diagonalized as

Where R is in the special orthogonal group SO(n) in Rn×n.  

For any element R of SO(n) in Rn×n

RRT = I where I is the identity matrix
From the above, R−1 = RT, e.g., just like a rotation in 3-space
det R = 1 
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rotated by a (generalized) 
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Singular Value Decomposition
Generalizing Diagonalization

Any matrix A ∈ Rm×n may be factored as follows:

A = UDVT

where U ∈ Rm×n, D = diag{σ1,…,σn}, V ∈ SO(n) ∈ Rn×n

The numbers {σ1,…,σn} are the singular values of A
They may be any (complex) number, including zero!
They are generalizations of eigenvalues for square matrices

Matrix U has the special property that it is “partially orthogonal”
UTU = I ∈ Rn×n

Note that VTV = I ∈ Rn×n because V ∈ SO(n)
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Singular Value Decomposition
Generalizing Diagonalization

The columns of V are called the right singular vectors of A
The columns of U are called the left singular vectors of A

Again consider the matrix-vector equation

y = Ax =  UDVT x

and perform the substitutions
ξ = VTx
η = UTy

We then have the (almost) equivalent equation

η = Dξ ηi = σiξi
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Like the case of a diagonalizable A, this 
equation is completely decoupled
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