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Presenter
Presentation Notes
Now we focus on design of accelerator control application
The feature requirements for these types of applications



Linear Beam Optics
Overview

Accelerator systems employ a full complement of magnetic and 
RF devices for their operation

The RF devices are used for acceleration
The magnetic devices are used for transport and containment

Here we focus on magnets; they define the beamline
Motion of charged particles through these magnets is analogous to 
the behavior of light rays through optical devices

Consider only the 1st order forces of magnetic fields
The resulting equations of motion are linear – Matrices!

Some magnets are specifically 2nd order and higher
We shall not consider these in linear beam optics
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Motion about the Reference Trajectory

When designing an accelerator, the first step is to define a reference 
trajectory.  Only the ideal, or synchronous, particle actually follows this 
trajectory.  All other beam particles follow trajectories about the design 
trajectory.

What we really need is a model describing particle deviations from the 
reference trajectory.

φo
ρo

ds

φ

ρ

dσ

x

The idea is to subtract the 
reference trajectory from the 
actual trajectory, and then take 
the linear approximation by 
discarding all higher order 
terms… 

This gives us equations for “x, 
y, and z”, which are the particle 
coordinates about the 
reference trajectory.

Motivation



Implementing the Beamline
Beamline Elements

Once the reference trajectory is 
agreed upon we employ a series of 
magnets to define the physical 
beamline

These magnets are typically 
“multi-pole” structures which 
produce the simplest type of fields 
possible

Simplifies analysis
Reduces beam degradation

The fields, in turn, produce the 
required forces on the beam 
particles
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We name magnet types by the number n of pole faces from which it 
is composed.

180° between 
poles

90° between 
poles

60° between 
poles

n=1: Dipole n=2: Quadrupole n=3: Sextupole n=4: Octupole

45° between 
poles

• In general, poles are equally space and 360°/2n apart.
•The pole faces and their spacing determine the magnetic field pattern
• The “skewed” version of the magnet is obtained by rotating magnet by 180°/2n.
•The field patterns determine the forces applied on the beam particles.

Other N-Pole MagnetsMagnet Families



N-Pole Uses
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Bending (following 
reference trajectory)

Focusing the beam

“Chromatic 
compensation”

Multi-pole Magnet Applications within 
the Beamline



Magnet Photos
Magnet examples

Dipole

Quadrupole

Sextupole



Magnet Forces
From Physics to Engineering: Designing the Particle Forces

Magnets create magnetic field B(x,y,z) 
For field-free region of multi- pole, field equations are Laplace’s Eq.

Fields create a force F on particle with velocity V at position 
(x,y,z)  from the Lorentz force law

Forces then affect the motion of the particles through Newton’s 
equations of motion (or Hamiltonian dynamics)
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Magnetic Forces
Designing the Beamline

It is up to the skill of the designer to 
1. Create a magnet with high-quality fields using the field equations
2. Align the magnet to produce the correct force on the particle using 

the Lorentz force law
3. Ensure that the particles are deflected appropriately using the 

equations of motion
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Modeling the Reference Trajectory
Beam Frame Coordinates

Now consider a special coordinate system (x,y,z) that follows the 
synchronous particle along the design orbit parameterized by path 
length s.  We call it the beam frame.

Synchronous particle located at origin (x,y,z) = (0,0,0) 
Coordinates x and y are horizontal  and vertical offsets, resp.
Coordinate z represents longitudinal offset from origin
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Modeling the Reference Trajectory
The “Beam Frame”

The beam frame is not an inertial frame
laboratory frame that follows synchronous particle
All other beam particles are identified by their coordinates in this frame
We can Lorentz transform to the stationary beam frame if necessary

(This is done for space charge calculations)
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Longitudinal Coordinate
Longitudinal Coordinate Conventions

Phase space coordinate z’ is different than standard momentum 
offset parameter δ

Coordinate z’ represents positional drift away from origin with s
Coordinate δ represents the fraction off mechanical momentum
They are related according to 

Factor γ0
2 from special relativity 

(length contraction and time dilation)

Note finally
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Recall Longitudinal Coordinate
ONCE AGAIN:
Longitudinal coordinate is special because it points in direction of 

propagation
Special Relativity must be considered

Alternate representations longitudinal “momentum” 
Longitudinal divergence angle z’ ≡ dz/ds
Off-momentum parameter       δ ≡ (p − p0)/p0

Energy difference parameter ΔW ≡ W − W0
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XAL uses z’



Longitudinal Momentum 
Comparison

Longitudinal Divergence z’
z’ → 0 as γ0 →∞ (as v → c)
Symmetric dynamics equations
Convenient for space charge 
Numerically sensitive at high energy
Probably better suited for protons

Momentum difference δ
δ can remain finite even if γ0 →∞
Asymmetric dynamics equations
Convenient for dispersion
Numerically stable at high energy
Probably better suited for elections



Modeling the Beamline
Transfer Matrix Approach to Linear Beam Optics

Because we only consider 
linear forces we can use 
linear algebra
We represent each beamline 
element as a (transfer) matrix 
with parameters identifying 

Magnet strength
Magnet length
Etc.

Beam Particle Coordinates
Each particle will be 
represented as a point in the 
six-dimension phase space

z = (x,x’,y,y’,z,z’)

Follows from the three spatial 
coordinates and the three 
corresponding momentum 
coordinates required for a 
solution to eq.s of motion

(State space representation)

Our task then, is to start from the 
equations of motion and derive a 
matrix for each element which includes 
the effects of motion in a curva-linear 
coordinate system



Φ0 Φm Φm+1 Φnz1
z0 zm

umu1

zm+1 zm+2 zn zn+1

um+1 un

Φm-1zm-1

um-1

Φm-1…Φ0

Φm…Φ0

Φ0 Φm+1
-1…Φn

-1

Φn Φn-1 …Φ0

Motivation
Modeling the Entire Beamline

One we have each beamline element n represented (mathematically) as 
a transfer matrix Φn, the entire beamline can be modeled as a cascade 
of these elements; multiplication of the {Φn} being the dynamics

We can propagate forward or backward through the network using the {Φn}
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Note that each 
beamline element 
may also have a 
control parameter 
u associated with 
it.



Modeling the Beamline
Strategy for Transfer Matrix Model Derivation

The computational details for determining each beamline element 
matrix can be found in many excellent texts in accelerator physics.

We will not present these derivations here

We focus on a (somewhat nonstandard) high-level picture of how 
these computation follow

In some global coordinate system (where the beamline is defned) we 
define the design trajectory as the spatial curve R0(s)
We form a moving coordinate frame (x,y,z) with origin at R0(s) about 
which beam particles have coordinates r = (x,y,z) within that frame
We write the equations of motion in the global frame, then take only 
first-order terms of the forces
We then translate the forces into the new moving frame
From there, the matrices for individual elements can be derived 
without regard to the original (global) beamline



Modeling the Beamline Elements
Equations of Motion (cont.)

After (extensive) manipulation, the equations of motion can be put into the 
form

where 

z is the phase coordinate vector in the moving frame (re-ordered coordinates)
Γ is the connection (centripetal, Coriolis, etc.) for the rotating frame
G is the 1st order force matrix in the moving frame

In linear accelerators (linacs) Γ = 0 since the frame (x,y,z) does not rotate
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momentum coordinates v = (x’,y’,z’)



Modeling the Beamline Elements
Transfer Matrices

Typically the matrices Γ(s) and G(s) are constant within a 
beamline element (e.g., magnet)

Thus, the solution to 

is given by the matrix exponential z(s) = es(G−Γ) z0 where z0 = z(0) 

For particle motion within a beamline element n we have

where

Gn is the generator matrix for element n (the applied forces)
Γn is the coordinate connection for element n (inertial forces)
Φn is the transfer matrix for element n
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Modeling the Beamline and Elements
Summary

The beamline is designed according to a reference orbit R0(s) and 
synchronous velocity V0(s) for distance s along the beamline.

The quantities R0(s) and V0(s) are the position and velocity of the 
synchronous particle in the global coordinates (X,Y,Z) at a distance s.

All other particles will propagate down the beamline in the 
vicinity of the synchronous particle.  To model this motion, we…

Construct a moving, local coordinate system (x,y,z) about the 
synchronous particle to describing the relative position of the beam 
particles.
Translate the 1st order forces of the magnets to this frame and also 
account for the internal forces of the moving frame with the 
connection  Γ.
Express the equation of motion in the local frame.  The result is…
A matrix-vector equation for the generalized particle phase 
coordinates r and v.



Modeling the Beamline
Practical Considerations

In general we let the theoreticians and engineers compute the 
transfer matrices and connections for the beamline.

Then we use the results for our model reference control and other 
engineering applications

However, there are some simple cases which we can compute that 
are instructive for observing the process.

Drift space – a field free region in a straight section of beamline
Quadrupole magnet – a magnet in a straight section of beamline



Beamline Element Transfer Matrices
Example: Drift Space

The beamline is straight; therefore Γ(s) = 0
No fields are present, thus, Gr and Gv are both zero so the matrix G is

The solution for Φdrift(s) is 

Thus, the solution is Φdrift (s) = I + sG, or explicitly
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This form differs slightly from 
others in the literature 
because we have taken 
z=(x,y,z,x’,y’,z’) rather than z
= (x,x’,y,y’,z,z’)

However, the matrix G is 
idempotent, that is,G2 = 0.  Thus 
esG is easy to compute.



Beamline Element Transfer Matrices
Example: Drift Space (cont.)

The single particle phase trajectory through a field free region (drift space) is 
then given by the matrix-vector equation

where z0 is the phase coordinate at the entrance of the drift and 

is the transfer matrix for the drift space.
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Beamline Element Transfer Matrices
Example: Quadrupole Lens

Ideal quadrupole magnets have fields defined by

(in global coordinates) where G is the field gradient of the quadrupole

The beamline is straight, thus O(s) = I and Γ(s) = 0

Computing the force differentials yields 
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Beamline Element Transfer Matrices
Example: Quadrupole Lens (cont.)

The external force generator matrix is then

where k2 = qG/p0 is the focusing constant

The transfer matrix is given by Φquad(s) = esG

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

000000
00000
00000
100000
010000
001000

)(

2

2

k
k

s
vr GG

I0
G



Beamline Element Transfer Matrices
Example: Quadrupole Lens (cont.)

The result is
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Once again this form differs 
slightly from others in the 
literature because we have 
taken z=(x,y,z,x’,y’,z’) rather 
than z = (x,x’,y,y’,z,z’)



Beamline Element Transfer Matrices
Example: Quadrupole Lens (cont.)

In the conventional phase space coordinate ordering the quadrupole 
transfer matrix appears as

where k ≡ (qG/p0)1/2

It is also possible to compute this result using standard techniques from 
ODE
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Modeling the Entire Beamline
Transfer Matrix Equations

The transfer matrix Φn(s) for element n describes the element’s 
effects upon the state vector z of the beam particle through the 
length of the element.

If the element has length ln then Φn(ln) is the effect of passing 
completely through the element.
We can cascade each beamline element passing the beam state from 
the exit of one to the entrance of the next to simulate the effects of 
the entire beamline.
The resulting modeling equations are

where zn is the beam state at the entrance to element n and Φn is 
shorthand for Φn(ln).

This formula describes the internal workings of the XAL online 
model

nnn zΦz =+1
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Modeling the Entire Beamline
Multi-stage control network

In controls parlance we call such a configuration a multi-stage control 
network

We can propagate forward or backward through the network using the {Φn}
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Note that each 
beamline element 
may also have a 
control parameter 
u associated with 
it.



Modeling the Entire Beamline
Applications: Model Reference Control

If we have model of the beamline, that we can compare actual 
measurements from the machine to simulated ones from the online 
model.  We can use the differences in these values to make 
inference about the operation of the machine.

Plant G
(accelerator)

Model Ğ
(simulator)

− errorInput u

Output y



0 0

uqh (ush1,usv1) uqv (ush2,usv2)

(x,y,z)
Qh S1 S2Qh Qv QvD1

D2

Beamline Modeling
Beam Steering from a Control Theoretic Perspective

Say we have Beam Position Monitors (BPMs) as our sensors, then 
our observables are the coordinates (x,y,z); that is, we do not have 
access to the full state vector – no momentum components

Set 

Then

where

Our modeling equations are then
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These are in the form of the 
discrete state space representation 
we have seen in linear systems



Summary
We have a convenient method of modeling the beamline to 1st

order
This model provides a convenient reference for model reference 
control applications
The model can be extended in a straightforward manner to handle 
the RMS statistics for a beam bunch.
We can also treat the 1st order effects of space charge using this 
extension.

Later we demonstrate how to instantiate an XAL online model 
that configures itself automatically for a selected AcceleratorSeq
object.



Supplemental Material

More details on Linear Beam Optics



Modeling the Beamline
Modeling the Particle Forces

Let the global coordinates be (X,Y,Z)
The design trajectory is represented by 
R0(s) = (X(s),Y(s),Z(s))

Let r = (x,y,z) be the position of an arbitrary 
particle in the beam frame.

The  position R(s) of the beam particle in the 
global coordinates is then

R(s) = R0(s) + O(s)r

where O(s) in SO(3) is an orthogonal matrix 
representing the orientation of  (x,y,z) with 
(X,Y,Z)

(Recall that SO(3) is the set of 3D rotations)

s 
y x

z
R0(s)  

design trajectory 

Z

X

Y 

R(s)  

p
r(s)  

E3 



Beamline Modeling
Example: Local to Global Coordinate Transform

For example, for a bend in the horizontal direction the matrix O(s) 
in SO(3) in R3×3 appears as

where θ(s) is the angle between the x and X axes (or z and Z axes).
Here O(s) is simply a clockwise rotation of (x,y,z) about the y axis.
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Beamline Modeling
Velocity vector in beam coordinates: Covariant Formulation

To find the divergence R’(s) we 
differentiate R(s) with respect to s

Let V0(s) ≡ βcR0’(s) be the velocity of 
the synchronous particle
Let v ≡ βcOT(s)O’(s)r + βcr’ be the 
particle velocity w.r.t. the moving frame
Define Ω(s) ≡ OT(s)O’(s) then 

v = βcΩ(s)r + βcr’

s 
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z
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To find the velocity component V(s) first note that 

V(s) = dR/dt = dR(s)/ds⋅ ds/dt = R’(s) ⋅ βc



Modeling Beam Dynamics
The Covariant Formulation

The matrix Ω(s) is known as a connection and contains the inertial 
effects of the moving frame (e.g., centripetal forces, Coriolis
forces)

Since we know O(s) from the design trajectory R0(s), we can always 
compute Ω(s) ≡ OT(s)O’(s)  a priori.

This is the called the covariant formulation.  

Within the beam frame we can replace the differentiation operator 
d/ds with Ω(s) + d/ds to obtain the frame-invariant equations of 
motion.

For example, we can find the acceleration vector A(s) in the global 
coordinates using the same procedure…



Modeling the Beamline
Acceleration Vector: Covariant Formulation

Starting from the velocity vector V(s) given by

we have

Collecting everything
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Beamline Modeling
Example: Horizontal Bend
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Modeling the Beamline Elements
First-Order Forces

The global particle force F is a function of particle position R and 
particle velocity V; that is 

F = F(R,V) = F(R0 + Or,V0 + Ov)

Expanding
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Modeling the Beamline Elements
Equations of Motion

The mechanical momentum P = (Px,Py,Pz)for a beam particle (in 
global coordinates) is

P ≡ γmV

where 
γ is the relativistic factor
m is particle mass
V = (Vx,Vy,Vz) is particle velocity

The equations of motion for a beam particle with momentum P are

( )OaAAVPF +==′== 0mcmccm
dt
d βγβγβγ

If there is no 
acceleration, then β’ 
and γ’ are zero



Modeling the Beamline Elements
Equations of Motion (cont.)

Combining the previous equation with the force expansion out to 
first order produces

Note that βγmcA0(s) = F[R0(s),V0(s)] is the equation of the 
synchronous particle, that is, this equation defines the design 
trajectory R0(s) and the design velocity V0(s).

We may remove it from the above since it is already known

The remaining component is the 1st order equations of motion
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Modeling the Beamline Elements
Equations of Motion (cont.)

To make the previous equation more transparent define the 
following:

These matrices are the 1st order force differentials about the design 
trajectory in the beam frame coordinates (x,y,z).  
(Usually we have these explicitly.)

The equations of motion are then
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Modeling the Beamline Elements
Equations of Motion (cont.)

The previous equation, along with the definition for v provides a 
complete set for the description of beam-particle 1st order motion

where p0(s) ≡ β(s)γ (s)mc is the design particle momentum.

We can put this into matrix-vector form (recognize this form?)
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Modeling the Beamline Elements
Equations of Motion (cont.)

Even more compactly

where

z is the phase coordinate vector in the moving frame (re-ordered coordinates)
Γ is the connection for the moving frame
G is the 1st order force in the moving frame

In linear accelerators (linacs) Γ = 0 since the frame (x,y,z) does not rotate
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Modeling the Beamline Elements
Transfer Matrices

Typically the matrices Γ(s) and G(s) are constant within a 
beamline element (e.g., magnet)

Thus, the solution to 

is given by the matrix exponential z(s) = es(G−Γ) z0 where z0 = z(0) 

For particle motion within a beamline element n we have

where

Gn is the generator matrix for element n (the applied forces)
Γn is the coordinate connection for element n (inertial forces)
Φn is the transfer matrix for element n
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