
Control Room Accelerator Physics

Day 3
The Software Process: Software Engineering and XAL

June 23-27 USPAS 2

Outline

1. Software Process Overview

2. Software Engineering

3. Software Architecture

4. Application frameworks

June 23-27 USPAS 3

Software Engineering
Definition

According to the IEEE
“The application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of
software: that is, the application of engineering to software.”

Software Engineering

This is a general approach to all software development, not just
accelerator control system software

Presenter
Presentation Notes
Modern engineered software development differs very little from hardware development. (The cost of manufacture is quite different.)

Engineering: The Counter Example
Software Engineering

June 23-274 USPAS

June 23-27USPAS5

It works: But do you want to deal with this?

(Polynomial Graphing Program)

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define _ ;double
#define void x,x
#define case(break,default) break[O]:default[O]:
#define switch(bool) ;for(;x<bool;
#define do(if,else) inIine(else)>int##if?
#define true (--void++)
#define false (++void--)

char*O=" <60>!?\\\n"_ doubIe[010]_ int0,int1 _ Iong=0 _ inIine(int eIse){int
O1O=!O _ l=!O;for(;O1O<010;++O1O)l+=(O1O[doubIe]*pow(eIse,O1O));return l;}int
main(int booI,char*eIse[]){int I=1,x=-*O;if(eIse){for(;I<010+1;I++)I[doubIe-1]
=booI>I?atof(I[eIse]):!O switch(*O)x++)abs(inIine(x))>Iong&&(Iong=abs(inIine(x
)));int1=Iong;main(-*O>>1,0);}else{if(booI<*O>>1){int0=int1;int1=int0-2*Iong/0
[O]switch(5[O]))putchar(x-*O?(int0>=inIine(x)&&do(1,x)do(0,true)do(0,false)
case(2,1)do(1,true)do(0,false)6[O]case(-3,6)do(0,false)6[O]-3[O]:do(1,false)
case(5,4)x?booI?0:6[O]:7[O])+*O:8[O]),x++;main(++booI,0);}}}

Software Engineering: The Counter-Example

June 23-27 USPAS 6

Some of the worst-ever software failures

1985: Six people died due to radiation overdose in the Therac-25 X-ray therapy
apparatus caused by a software bug (logic error).

1996: An Ariane 5 spacecraft exploded 36 seconds after take-off. The problem was
due to software originally used in its predecessor, the Ariane 4. A directional
correction was applied that exceeded the new aerodynamic tolerances.

1999: The Mars Climate Orbiter incinerated in the Martian atmosphere because
data that was in expressed in English units was entered into software designed for
metric units.

The original software in the F-16 fighter jet would have inverted the plane when
crossing the equator. (Fortunately, this bug was detected via simulation.)

Software Engineering
Motivation

Introduction
Engineering has Scope

Note that we are implicitly referring to complex
software

Large software systems
“Bullet proof” software (medical, military, etc.)
Financial

Simple software does not require significant
engineering

“Hello World”
Readback display, calculator, etc.

June 23-27 USPAS 7

The Software Process
Definition

The development process is the structure imposed on the
development of software products

You will chose an process strategy (even if you do not chose)
This strategy dictates the entire software life-cycle

Inception
Elaboration and Design
Documentation
Implementation
Deployment
Maintenance
Upgrades

June 23-27 USPAS 8

Software Engineering

Presenter
Presentation Notes
in fact “process” and “life-cycle” are synonyms in software engineeringSatisfying software requirements ASAP is a short-term strategy and tends to neglect design and, therefore, engineering

Software Process
Strategies

Back-loaded strategies (reactive)
Most resource are spent in the maintenance and upgrade
phases
Example: “Quick and Dirty” implementation (no engineering)

Software up and running quickly but tends to be brittle.
Difficult to upgrade and maintain (inflexible)

Front-loaded strategies (engineering-centric)
Most resources are spent in the scoping, design, and
documentation phase
Example: “Application frameworks”

These difficult to implement, but upgrades and maintenance are
easy (flexible)

June 23-27 USPAS 9

Software Process
Classical Process Phases

System engineering and analysis
What should be done in hardware/software?

Requirements and analysis
What the software should do

Software design and documentation
How to do it

Implementation
Doing it

Testing
Does the software do what it should do?

Maintenance:
Requirement changes (upgrades)
Errors

“Waterfall Model” – obsolete in modern terms due to inflexibility
June 23-27 USPAS 10

Software Engineering

Presenter
Presentation Notes
Waterfall model Low Risk - User interface - Performance requirements High Risk - Budget - Schedule predictability and controlModern processes are typically iterative

Software Process
Typical Breakdown for Modern Process

Time (before deployment):
Analysis, Design: 60%
Coding: 15%
Testing: 25%

Time: After deployment
Maintain/Upgrades: 100%

Cost
Before deployment: 30 - 50%
After deployment: 50 – 70%

June 23-27 USPAS 11

Software Engineering

Software Process
Typical Project Breakdown (cont.)

Maintenance is 50-70% of total project cost!
Why?

Fundamental errors in the original system
Poor implementation of original system
Lack of familiarity with the system
Poor documentation of the original system
Poor documentation of changes

Be careful of jumping into a back-loaded strategy

June 23-27 USPAS 12

Construction

….1

Modern Process Model
Most modern (large) software projects employ some type of
iterative process model

Beta version
Release version
Correcting original implementation errors
Additional feature requests

June 23-27 USPAS

Inception Analysis,
Design,
Elaboration

2 3

Transition

“mini” water falls

Presenter
Presentation Notes
“Microsoft, were quality is number 1.1”

Software Process
“Spiral” Process Model

The “Spiral Model” is the most generic process model.
Most software process models are special cases

Based upon a risk management approach
defer elaboration of low risk software elements
incorporate prototyping as a risk reduction strategy
focus early on reusable software
accommodate life-cycle evolution, growth, and requirement
changes
incorporate software quality objectives into the product
focus on early error detection and design flaws
set completion criteria for each project activity to answer the
question: "How much is enough?"
use identical approaches for development and maintenance
can be used for hardware-software system development

June 23-27 USPAS 14

Software Engineering
Tools for Process Stages

Inception
Elaboration

Use cases!
Design

System requirements
Structure diagrams

Classes diagrams
Component diagrams

Behavior diagrams
Activity diagrams
Interaction diagrams

Deployment
Deployment diagrams

Modeling and Design Tools
Design Patterns

Standard architecture patterns
for common software tasks

UML
Unified Modeling Language

SysML
Systems Modeling
Language

EMF
Eclipse Modeling
Framework

中文、Deutche, English,
Français, 日本語,헌굴, etc.

June 23-27 USPAS 15

Presenter
Presentation Notes
Software modeling tools are analogous to circuit diagrams, mechanical drawings reaction diagrams, etc.

Software Engineering
Inception

Accelerator project is proposed, designed, modified, etc.
Somehow a set of requirements is produced involving the
control system.
These requirements, in turn, contain specifications on high-
level control

Know your scope! Examples
Upgrade/modification to a single existing control application
Implementing a single application on existing system
A control requirements change
Implementing new control application suite on existing system

Size of the suite is important!
Design and implementation of a new control system

June 23-27 USPAS 16

im
portance of engineering

Software Engineering
Elaboration ⇔ Requirements

Software requirements are essential for design
In turn, design strategies are suggested by requirements

Use Cases help you elaborate requirements
Why is the software used?
How is the software be used?
Is there commonality?

Use Case Diagrams
Visualize software use and requirements
Flesh out essential requirements
Identify shared and hierarchical functionality

June 23-27 USPAS 17

Software Engineering
Use Cases

Viewing the software from the
user’s perspective

Use Case Diagrams
Components of the diagram

Actors (roles)
Scenarios
Relations

Identify important activities

June 23-27 USPAS 18

Important!
Note the number of edges!

Use Cases in Accelerator Control
Example: Orbit Correction Application

Users
Shift supervisor
Operator
Physicist

Scenarios
Check orbit (Plot BPMs)
Flatten orbit
Optimize orbit
Plot predicted Trajectory

June 23-27 USPAS 19

Software Engineering
Design “Blueprints”

Designing systems on paper that
supports behavior necessary to
perform use cases
Architecture

Overall structure of software
Components

Autonomous blocks of code
performing common task

Interfaces
Communication protocols by
which components interact

Classes
Atomic units of code from
which components are built
Basic elements of the problem
domains

June 23-27 USPAS 20

component

interface

class

architecture

http://www.visual-paradigm.com/VPGallery/diagrams/Class.html

June 23-27 USPAS 21

Design Patterns
Common architectural
solutions to common
engineering tasks

Analogous to amplifiers,
DSPs, A/D converters, etc.

Software Engineering
Design Patterns

A
bstract Factory

Example: Architecture
Design Blueprints for Design of an Accelerator Application

Document/View/Controller Design Pattern
XAL Application Framework
supports this architecture for
building applications

Document centralizes and
encapsulates the application’s data

Views provide different
perspectives of the data

Controller consolidates interaction
between users, views, and data.

June 23-27 USPAS 22

Component Diagram
Orbit Display Application Design

Software Engineering: Interfaces
Example: The IControl and IData Interfaces

Interfaces are one of the most
design intensive software entities

Provide clean connections
between components

The capabilities of your software
component is then only as good
as your interface allows it

You must anticipate and
accommodate!

June 23-27 USPAS 23

Software Engineering
Modeling Behavior

There are a variety of techniques for abstracting and visualizing
software behavior (especially in UML)

Activity Diagram: Depicts high-level processes, including data flow,
to model the logic of complex logic within a system

Sequence Diagram: Models the sequential logic, in effect the time
ordering of messages between classifiers.

State Machine Diagrams: Describes the state an object or
interaction may be in, as well as the transitions between states

Timing Diagram: Depicts the change in state or condition of a
classifier instance or role over time. Typically used to show the
change in state of an object over time in response to external events

June 23-27 USPAS 24

Example: Sequence Diagram
Operator Invoked Orbit Flattening

Operator invokes flattening command

View computes new corrector values
and sends them to document

Document notifies controller that we
are currently inconsistent

Once correctors are set, document
notifies controller there is new
configuration

Controller notifies all views that the
data has changed

Views perform any necessary updates

June 23-27 USPAS 25

June 23-27 USPAS 26

With software blueprints, implementation takes about 15-
30% of the effort.

Before modern software techniques, design and testing
phases were skipped (at least formally)

Jump immediately into “coding” (how many lines of code?)
However, design has always occupied most of the effort

They were simply coding and designing simultaneously
This is analogous to building a house without blueprints

No documentation
No meaningful metrics for progress, operation, etc.
Does not support team development
Weak integration

Implementation
Writing the Code

Software Engineering

Presenter
Presentation Notes
The physics community in general“lines of code” is a meaningless metricJust because you are doing something does not mean you are getting anything done

Testing (Quality control)

Critical software must be tested
Verification: Is it doing what is supposed to do?
Validation: Does it compute the answer

New software must be tested for compatibility against
existing software

Test suites expedite this process

JUnit is a standardized method for created Java based
test suites

June 23-27 USPAS 27

June 23-27 USPAS 28

Deployment
Visualizing the Physical System

IOC

«executable»
apps::High-Level Application

Physics
Server

«executable»
SNS Start Map

Control
Computer

Console

Local Network

«library»
xal::xal.jar

XML...
...........
...........
...........

Console

Console

IOCIOCIOC

Iteration and Version Control
Last (Important) Word on Software Engineering
Breaking from the Waterfall

Refactoring is good
Requirements change
Original implementation errors
Features are added
Improvements due to unfamiliarity with original system

Thus, version control is critical
Tools such as CVS and Subversion provide an environment
for maintaining consistent software versioning
These tools also allow team development

June 23-27 USPAS 29

Summary
Software Engineering “Rules of Thumb”

Develop software iteratively
Manage requirements
Work out use-cases
Use component-based architectures
Visually model software
Verify software quality
Control changes to software

June 23-27 USPAS 30

Software Engineering

Build a solid foundation for
complex software systems

Presenter
Presentation Notes
Rules of thumb to avoid building a “house of cards”Engineering by its nature is an art formPhysics gives you the rules, but implementation/design is left to the creativity and experience of the designer

	Control Room Accelerator Physics
	Outline
	Software Engineering�Definition
	Engineering: The Counter Example
	Software Engineering: The Counter-Example
	Software Engineering �Motivation
	Introduction�Engineering has Scope
	The Software Process�Definition
	Software Process �Strategies
	Software Process�Classical Process Phases
	Software Process�Typical Breakdown for Modern Process
	Software Process�Typical Project Breakdown (cont.)
	Modern Process Model
	Software Process�“Spiral” Process Model
	Software Engineering�Tools for Process Stages
	Software Engineering�Inception
	Software Engineering�Elaboration Requirements
	Software Engineering�Use Cases
	Use Cases in Accelerator Control�Example: Orbit Correction Application
	Software Engineering�Design “Blueprints”
	Software Engineering�Design Patterns
	Example: Architecture�Design Blueprints for Design of an Accelerator Application
	Software Engineering: Interfaces �Example: The IControl and IData Interfaces
	Software Engineering�Modeling Behavior
	Example: Sequence Diagram�Operator Invoked Orbit Flattening
	Implementation�Writing the Code
	Testing (Quality control)
	Deployment�Visualizing the Physical System
	Iteration and Version Control �Last (Important) Word on Software Engineering�Breaking from the Waterfall
	Summary�Software Engineering “Rules of Thumb”

