Using the New Scenario Object and Synchronization Framework
C. McChesney

November 4, 2003

Goals
The Scenario object:

· Contains everything necessary to run and manipulate the on-line model (accelerator, on-line model lattice, synchronization, model inputs, probe, trajectory)
· Provides synchronization between the on-line model lattice and the accelerator for either live or design values
· Allows what-if experimentation, running the model with user-provided values for selected properties of accelerator nodes (e.g., “what will happen if I change this magnet’s field”)
Important Concepts
Accelerator Nodes
The XAL Accelerator object provides a device-oriented representation of the actual accelerator machinery. The Accelerator object is comprised of Sequences, which in turn are comprised of Accelerator Nodes. Accelerator Nodes represent the accelerator devices, such as magnets and RF gaps.
Modeling Elements
The on-line model uses a Lattice as the framework for running simulations. A Lattice consists of sequences, and each sequence contains Elements. Some Elements in the Lattice model the dynamics of an accelerator device, others don’t correspond to a device in the accelerator such as identifying Marker and Drift Space Elements. So a Lattice Element may correspond to either 0 or 1 Accelerator Node objects.

Some Accelerator Node objects need no representation in the Lattice because their dynamics are not important to the model. Other Nodes may be represented by more than one Lattice Element; for example a magnet in the accelerator might be represented in the Lattice by a magnet Element, followed by a marker Element (signifying the center of the magnet) followed by another magnet element.

[image: image1.emf]Accelerator

AcceleratorNode

Lattice

Element

1

*

0..1*

1

*

This simplified UML diagram depicts the Accelerator, Node, Lattice, and Element objects, and the relationships between them
Node Properties and Element Value Synchronization
Given this relationship between Accelerator Nodes and Lattice Elements, there is a need for a synchronization mechanism to set Element values from their corresponding Accelerator Nodes. Currently, the two Accelerator Node types that are synchronized to their corresponding Lattice Element types are Electromagnet and RfGap. The job of the synchronization mechanism is to get the values of Accelerator Node properties and use them to set the values of the corresponding Lattice Elements. The RfGap properties for which synchronization is supported are ETL, phase and frequency. The only Electromagnet property is the magnetic field.

[image: image2.emf]RfGap Accelerator NodeRfGap Lattice Element

ETL

Freq

Phase

ETL

Freq

Phase

The figure above shows the synchronization of an RF Gap Accelerator Node’s properties to a corresponding Lattice Element’s values
Synchronization Mode
Presently, two modes of synchronization are supported: live or design value. Live value synchronization uses channel access to get real accelerator values for Node properties. Design value synchronization returns design values for Node properties.
Model Input (What-if)
To support what-if modeling and provide the basis for a solver / optimizer framework, the user may override a Node property within a scenario. This Model Input overrides the synchronization source for the specified node property with the user-supplied value. When the Lattice Elements are synchronized to their corresponding Accelerator Nodes, each synchronized Element value is set according to the specified synchronization mode (live or design), and then any Model Input values override the synchronized values for the appropriate Node properties.

[image: image3.emf]RfGap Accelerator NodeRfGap Lattice Element

FreqFreq

4.02E8

ETL

Phase

ETL

Phase

In the figure above, synchronization of the Node’s frequency Property is overridden by a Model Input. When a synchronization is performed, the Element’s ETL and phase fields obtain their values from the corresponding Node Properties – the frequency field value is obtained from the Model Input value of 4.02E8
Using the Scenario Object
Creating a Scenario
To create a Scenario object, use the newScenarioFor static factory method on the Scenario class. It accepts a single argument, the Accelerator Sequence to build the model for. This code snippet from ScenarioGeneratorTest demonstrates:

try {

Scenario scenario = Scenario.newScenarioFor(combSeq);

} catch (ModelException e) {

fail("ModelException generating scenario for: " + combSeq);

}

Setting the Scenario’s Synchronization Mode
The default synchronization mode for a new Scenario is design value. The method setSynchronizationMode(String modeName) changes the mode to the specified setting. Subsequent calls to propertiesForNode(…) and resync() use this setting. The valid synchronization modes are specified as constants on the Scenario class, accessible as Scenario.SYNC_MODE_DESIGN or Scenario.SYNC_MODE_LIVE. This code snippet demonstrates:
scenario.setSynchronizationMode(Scenario.SYNC_MODE_DESIGN);

Finding an Accelerator Node by ID
Many of the Scenario API methods accept AcceleratorNode arguments. In cases where the application doesn’t have a handle to the desired Node, the query method nodeWithId(String id) can be used to retrieve one. This is demonstrated by the code snippet below:
AcceleratorNode mag = scenario.nodeWithId("MEBT_Mag:QH12");
Querying Node Properties and Current Values
In some cases, the application needs to know the properties available for a certain Node and / or the present value of each property. The method propertiesForNode(AcceleratorNode aNode) returns a map whose keys are the names of available node properties, and values are the property’s present value using the scenario’s current synchronization mode (live or design). This is demonstrated by the code snippet below:
Map magValues = null;

try {

magValues = scenario.propertiesForNode(mag);

} catch (SynchronizationException e) {

fail("error getting properties for: " + mag);

}

Providing Model Input (What-if)
To override the synchronized value for a Node property with a Model Input, use the method setModelInput(AcceleratorNode aNode, String property, double value) to set the input value. Property names can be obtained from the map returned by propertiesForNode(…) and are also defined as constants in the classes ElectromagnetPropertyAccessor and RfGapPropertyAccessor. (NOTE: I don’t love putting the constants there, I’m open to other suggestions) This snippet demonstrates:
double fieldOverride = 25.5;

scenario.setModelInput(mag,

ElectromagnetPropertyAccessor.PROPERTY_FIELD,

fieldOverride);

Removing Model Input
To remove a Model Input override to a node property use the method removeModelInput(AcceleratorNode aNode, String property). This removes the override for the Node’s property – the next synchronization will set element values using the Scenarios current synchronization mode. This snippet demonstrates:

scenario.removeModelInput(mag,

ElectromagnetPropertyAccessor.PROPERTY_FIELD);
Synchronizing Model Element Values
To synchronize Element values according to the current synchronization mode, use the resync() method. Element values will be obtained using the synchronization mechanism; ModelInput overrides will be applied to the appropriate Node properties.

Loading a Probe
Use the setProbe(Probe aProbe) method to set the scenario’s probe. This is demonstrated by the snippet below:

XmlDataAdaptor probeXmlDaptr = null;

try {

probeXmlDaptr = XmlDataAdaptor.adaptorForFile(new

File(PROBE_FILE), false);

} catch (Exception e) {

fail("exception creating probe xml adaptor: " + e);

}

try {

probe = ProbeXmlParser.parseDataAdaptor(probeXmlDaptr);

} catch (ParsingException e1) {

e1.printStackTrace();

fail("parsing exception reading probe xml");

}

scenario.setProbe(probe);
Running the Model
To run the model contained by the Scenario, simply use the run() method as demonstrated below:

try {

scenario.run();

} catch (ModelException e) {

fail("ModelException propagating probe");

}

Accessing the Trajectory
To access the Trajectory obtained by running the model, use the getTrajectory() method. This method throws an IllegalStateException if the probe is null or has not yet been propagated.
_1129535582.vsd
RfGap Accelerator Node

RfGap Lattice Element

ETL

Freq

Phase

ETL

Freq

Phase

4.02E8

_1129536228.vsd
Accelerator

1

*

AcceleratorNode

Lattice

Element

1

*

0..1

*

_1129535464.vsd
RfGap Accelerator Node

RfGap Lattice Element

ETL

Freq

Phase

ETL

Freq

Phase

