
Unclassified LA-UR-06-5303

 1

Configuration and Initialization of the XAL High-Level
Application Development Environment*

First Edition

Christopher K. Allen
Los Alamos National Laboratory

Los Alamos, New Mexico 87545 USA
ckallen@lanl.gov

C. M. Chu, John D. Galambos, Thomas A. Pelaia, and Andrei Shishlo
Spallation Neutron Source, Oak Ridge National Laboratory

Oak Ridge, Tennessee, 37831 USA

July, 2006

* Work supported by US Department of Energy

Unclassified LA-UR-06-5303

 2

Abstract

This document describes the basic configuration mechanism of the high-level accelerator-
application development environment known as XAL. Specifically, we describe how to configure the XAL
system to a given particle accelerator site. The primary purpose of XAL is the rapid development of high-
level applications needed for control and operation of charged-particle beam accelerators and accelerator
systems. We begin with an overview of XAL, discussing the basic design philosophy and architecture. To
utilize the XAL environment, it must be configured to the specific accelerator site, after which, applications
may be written in a more general fashion, in particular, without regard to the specific machine to which it
applies. There are four main XML files used to configure XAL to a given accelerator site: the main file,
the optics file, the timing file, and the model-parameters file. There is also a legacy mechanism for
entering particle beam data (used in simulation) known as the probe file. We discuss all of these files in
detail.

Unclassified LA-UR-06-5303

 3

Table of Contents

1 Introduction.. 5

1.1 XAL Overview.. 5

1.2 Basic Architecture of XAL ... 7

1.3 XAL Configuration Mechanism ... 7

1.4 XAL Persistent Data ... 9

2 Accelerator Optics: The <optics_source> File .. 9

2.1 Basic Hardware Objects: The <node> Element.. 11

2.1.1 Node Attribute Buckets... 11
2.1.2 Power Supplies: The <ps> Element.. 14
2.1.3 Node Connectivity: The <channelsuite> and <channel> Elements.............. 15

2.2 Accelerator Sectors: The <sequence> Element .. 16

2.2.1 Sequences Representing RF Cavities.. 17
2.2.2 Sequence Attributes .. 19
2.2.3 Sequence Attribute Buckets.. 20
2.2.4 Sequence Connectivity: The <channelsuite> Element Revisited 21

2.3 Combination Sequences: The <comboseq> Element 21

2.3.1 Working with Sequences and Combinations Sequences 21
2.4 Power Supplies: The <powersupplies> element ... 22

3 Timing Process Variables: The <timing_source> File 23

4 Auxiliary Data: Using the <tablegroup_source> Element 24

4.1 Basic Form of a <tablegroup> Element .. 24

4.2 The Model Parameters <tablegroup> Entry.. 26

4.2.1 The Species Table ... 26
4.2.2 The Beam Table.. 26
4.2.3 The Adaptive Tracker Table ... 27
4.2.4 The Twiss Table.. 28
4.2.5 The Location Table ... 29

5 Particle Beam Representation: Probe Files.. 29

5.1 The <probe> Element ... 30

5.2 File Comments: The <comment> Element ... 31

5.3 Specifying the Simulation Algorithm: The <algorithm> Element 31

5.3.1 The <tracker> Element ... 31

Unclassified LA-UR-06-5303

 4

5.3.2 The <adapt> Element.. 32
5.4 Specifying the Initial Probe State: The <state> Element 32

5.4.1 Setting the Initial Energy, Time, and Position: The <location> Element..... 33
5.4.2 Specifying the Particle Charge and Mass: The <species> Element.............. 33
5.4.3 Specifying the Beam Current and Bunch Charge: The <beam> Element 33
5.4.4 Specifying the Initial RMS Beam Ellipse: The <envelope> Element 33

6 Conclusion ... 33

References... 35

Appendix A: Listing of xdxf.dtd .. 36

Appendix B: XAL Channel Handles .. 39

Unclassified LA-UR-06-5303

 5

1 Introduction
The XAL software system is a programming environment specifically designed for developing

high-level control applications for charged-particle accelerator systems. In its initial inception, it began as
a support tool for the Spallation Neutron Source (SNS) in Oak Ridge, Tennessee, which continues to be the
primary source of development activity. However, collaborative development efforts have existed at Los
Alamos National Laboratory, Brookhaven National Laboratory, and, most recently Stanford Linear
Accelerator. XAL attempts to provide a uniform standard for building high-level control applications for
accelerator systems. It provides a common hardware-independent platform for building such applications.
In this manner different accelerator sites can share software, leverage off existing development, and
participate in collaborations where common interests occur.

This presentation first provides a brief introduction to XAL, then discusses in detail the XAL
configuration mechanism. Specifically, we explain how to configure XAL to a particular accelerator
complex. This activity primarily consists of describing the hardware arrangement of an accelerator
complex and informing XAL of all the corresponding control signals (process variables) of the given
hardware. As we shall see, this task is accomplished through the proper construction of a set of formatted
XML (eXtended Markup Language [15]) files. Once these files are built, we may develop control
applications using the XAL environment, and use many of the existing applications that ship with XAL.

1.1 XAL Overview
The basic purpose of XAL is to provide a high-level programming interface for charged-particle

accelerator systems. That is, we write programs that communicate with the machine hardware from a high-
level “physics perspective”, rather than a lower-level “engineering perspective” (e.g., EPICS
programming). XAL also attempts to provide uniformity in programming practice and in the developed
applications. For example, XAL applications all present a uniform look and feel. Moreover, MKS units
are typically used, the notable exceptions being described here. XAL also contains many “off-the-shelf”
tools for building applications, such as an optimization package, a signal processing package, and a GUI
framework. Typically, these tools are “boxed” according to a standard programming interface so that
different tools within the same package may be swapped in and out. An UML mechanism diagram of the
XAL system is shown in Figure 1. In the diagram we can see the four main mechanisms of XAL: a
physics-centric representation of the hardware, an online simulator for model-based control applications,
high-level connection management including synchronization between the hardware and the model, and a
suite of common tools available to all XAL users. For a more comprehensive overview of the XAL
environment one may consult references [6], [7], [8], and [14].

Figure 1: XAL mechanisms

Unclassified LA-UR-06-5303

 6

The XAL
environment can be thought
of as middleware between
the applications programmer
and the lower-level EPICS
(Experimental Physics and
Industrial Control System)
software. Or as an
alternative view, XAL
provides an additional layer
of abstraction from the
EPICS communication
layer. Where EPICS is
essentially “flat”, that is, all
signals look alike; XAL
presents the machine
structure to the application
developer. This concept is
depicted in Figure 2 were we
show the interdependencies
of various parts in an
accelerator control system.
Notice in the figure that the application developer may ignore the GUI mechanism of XAL, or XAL
altogether. XAL also communicates directly with Matlab [11] and the Jython [10] implementation of the
Python scripting language. Thus, prototype applications may be quickly built from these scripting
environments for testing and debugging.

Note also in the figure that XAL can support multiple communication protocols, in particular the
EPICS channel access (CA) or Cosylab’s Abeans [8]. The notion of a communication channel is abstracted
in XAL. Although the application developer will probably seldom interact with channels directly, XAL
treats every channel object in a uniform manner. The details of implementing a concrete channel are left to
the underlying communications protocol. So far, EPICS has been the primary communications support
protocol.

To support its physics-centric view of the accelerator, the XAL applications programming
interface (API) is object-oriented where hardware objects such as beam position monitors (BPM), steering
magnets, and quadrupole magnets are encapsulated by software objects. XAL provides a multi-layered
view of the entire accelerator, which is configured dynamically (i.e., at run time). The developer may

Figure 2: XAL in the control system hierarchy

Figure 3: the XAL hardware datagraph

Unclassified LA-UR-06-5303

 7

inspect the hardware configuration by traversing through a tree-like data structure of software objects. An
UML instance diagram of this XAL “datagraph” is shown in Figure 3 for section of an example accelerator.
Using this capability, the application developer is able write applications that are not “hard-coded” to a
particular machine configuration. The practice of building “one-off” control applications that function only
for a specific accelerator site can be eliminated with proper programming in XAL.

1.2 Basic Architecture of XAL
The

architecture of XAL
is based upon modern
software engineering
principles. In
particular, XAL is
implemented with a
component-based
architecture. The
modern software
engineering
philosophy prescribes
that very large
software systems
should be composed
of modular
components that fit
together with well-
defined software
interfaces. This
situation is exactly
analogous to modern hardware design methodology where large systems are assembled from smaller
components. For example, a computer is built from integrated circuits, circuit boards, hard drives, memory
cards, and peripherals which all communicate via well-defined hardware interfaces (e.g., VMI, SCSI, PCI,
USB, etc.). As long as the interfaces remain unchanged, hardware components which understand these
interfaces may be swapped in or out of the system. Likewise, the situation exists with modern software
systems. Thus, the difficult part is designing an interface that will accommodate all the requirements of the
system components, including potential upgrades. Figure 4 is an UML component diagram showing some
of the major components of XAL. There we see that the connection mechanism is a separate component of
XAL, where either JCA (Java channel access), CAJ (channel access in Java), or Abeans may be used for
the actual communication. Also shown in the figure is the configuration mechanism. This feature is
accommodated (ideally) using a master database containing the machine hardware description from which
a set of XML configuration files is instantiated. The XML files have a specific format and were intended
to provide independence between database configuration and XAL development.

1.3 XAL Configuration Mechanism

Figure 4: UML component diagram of XAL

Unclassified LA-UR-06-5303

 8

XAL is built on
the principle of dynamic
configuration. That is,
XAL adapts to the current
configuration of the
underlying accelerator
hardware, rather than
building applications
which a particular
machine configuration.
The component that drives
this mechanism is a set of
XML configuration files,
as shown in Figure 5. The
root file in the hierarchy is
main.xal; it contains the
names and locations of the
other files in the XAL
configuration mechanism.
Currently there are three
main files to which the root file main.xal points: one describes the hardware configuration of the
accelerator (sns.xdxf in Figure 5), another describes the parameters required for beam simulation or
“model parameters” of the machine (model.params in Figure 5), and the last describes the set of process
variables (PVs) used for timing purposes (timing_pvs.tim in Figure 5). There also may exist separate
“probe” files, Figure 5 depicts such a file called MebtEntr.probe. The data in such a file describe beam
parameters necessary to instantiate a “beam probe” for machine simulation. This probe-file mechanism has
more or less been deprecated by the model parameters file, whose data includes that of a probe file.
However, such files may still be convenient in some circumstances.

Excerpt 1 shows the contents of main.xal for the situation depicted in Figure 5. The first line is
standard XML protocol specifying the character encoding used within the document (in this case UTF-8, or
Unicode Transformed Format 8). The second line is important. It indicates the Document Type Definition
file, or DTD file, specifying the data format in the current XML files; for XAL the DTD file is xdxf.dtd.
Essentially, then, the xdxf format is the major topic of the presentation. DTD files are a means of not only
specifying the format of an XML file, but enforcing it as well. However, DTDs are essentially being
replaced by XML Schema Definitions, or XSDs. These format specifications are more flexible and can
maintain tighter control of the XML layout. Currently there is no XSD within the XAL configuration
system, which continues to use the DTD file xdxf.dtd. A listing of xdxf.dtd is provided in Appendix A.
For those familiar with DTD files, this listing may help in the understanding of the XAL configuration
mechanism. The sequel is devoted towards the explanation of the xdxf format and how to use it in order to
describe the hardware configuration of an accelerator system.

The rest of main.xal contains a listing of all the configuration files used by XAL. These files are
listed under the XML element tag <sources>. The element <optics_source> contains the URL of the file
defining the hardware configuration of the accelerator (in the xdxf format); in this case sns.xdxf. The
xdxf format specifies that there can be only one <optics_source> element, that is, it is a singleton. There

Figure 5: XAL configuration files

optics = sns.sdxf
model = model.params
timing = timing_pvs.tim

hardware config

model parameters

timing PVs

main.xal

sns.xdxf

model.params

timing_pvs.tim beam parameters

MebtEntr.probe

<?xml version = '1.0' encoding = 'UTF-8'?>
<!DOCTYPE sources SYSTEM "xdxf.dtd">
<sources>
 <optics_source name="optics" url="sns.xdxf"/>
 <timing_source name="timing" url="timing_pvs.tim"/>
 <tablegroup_source name="modelparams" url="model.params"/>
</sources>

Excerpt 1: contents of main.xal

Unclassified LA-UR-06-5303

 9

are two attributes in the <optics_source> element, name and url. Since <optics_source> is a singleton
element, the value of the name attribute is the identifier string of the XAL data graph. Since this is a
singleton the value of its identifier is arbitrary, the user should pick a value that makes sense in context of
the machine. The second attribute, url, points to the location of the actual file containing the configuration
data (i.e., it is the URL of the configuration file). The next element, <timing_source>, also a singleton,
points to a file which lists all the general timing signals used by XAL. Such signals are used by
applications that trigger on certain events, like an RF pulse, or monitor certain aspects of the machine, such
as the orbit. It, too, has the attributes name and url, and they are used in exactly the same way as for an
<optics_source> element. Finally, the last element, <tablegroup_source>, is an example of what is
called a table group in XAL.

Table groups contain arbitrary user data, stored in a schema-based table format, which is not
otherwise part of the XAL specification, but available within the XAL framework. They are XAL’s
mechanism for providing dynamic data to applications and are discussed in detail within Chapter 4. There
can be many <tablegroup_source> elements in main.xal and, thus, many table groups within the XAL
framework. The attributes of a <tablegroup_source> element are, again, name and url. They are used just
as the previous source elements, with the exception that the name attribute be unique. This requirement is
necessary since there can be multiple <tablegroup_source> element; the unique value of the name attribute
is used to refer to the particular table group within XAL. There is one special case of a table group within
XAL, that having the name attribute with value “modelparams”. This is the case shown in Excerpt 1. This
particular table group is called the “model parameters” table group. This table group has a pre-defined
format recognized by XAL to contain all the modeling data not directly associated with the machine
hardware. In particular, all the beam parameters are contained in this file, as well as numeric parameters
for doing simulations. The format of this special table group is discussed in Section 4.2.

1.4 XAL Persistent Data
Within XAL the various XML configuration files are managed by the class

gov.sns.xal.smf.data.XMLDataManager. Instances of this class are the primary method for providing
access to XAL’s persistent data (i.e., data shared between XAL applications and maintained over time).
This class is capable of not only loading XAL data but storing it as well. Thus, the optics file and any table
groups may be modified using this class. The application developer would typically create an instance of
XMLDataManager, point it to the URL of the main.xal file, then use it to built the XAL data graph
representing the accelerator hardware. Of course, there are already mechanisms available in the application
framework within XAL providing such services, yet, we wish to point out the nature of the
XMLDataManager class since it is central to the XAL configuration mechanism.

Once an instance of XMLDataManager is pointed to the main.xal XAL file, the output is a
populated instance of the data structure held in the Accelerator class. An instance of Accelerator is a
representation of all the machine hardware and some supporting systems according to the configuration
described in the optics file, timing file, and any miscellaneous data from the table groups. The
XMLDataManager class employs two support classes from the same package, TimingDataManager and
OpticsSwitcher. The TimingDataManager class is responsible for reading the timing file (described in
Section 3) and creating a TimingCenter object, which is attached to the Accelerator object. The
XMLDataManager also contains an internal class, TableManager, for reading and storing any miscellaneous
table group data identified by <tablegroup_source> elements in the main configuration file. This
auxiliary data is accessible from a singleton EditContent object, which is also attached to the Accelerator
object. The EditContext object is like a miniature relational database, it is the method by which XAL
programmatically stores and retrieves table group data that does not otherwise fit into the current
architecture. It is part of the gov.sns.tools.data package, which it shares with many of its component
classes. Again, for a full description of this data mechanism see Chapter 4.

2 Accelerator Optics: The <optics_source> File
The optics configuration file, or optics file in XAL terminology, is tagged <optics_source> in

main.xal. It contains the hardware components of the accelerator and their current configuration.
Obviously XAL is not concerned with every hardware component in the machine, only those pertinent to
high-level control. So there are many components of the machine that are not in the optics file (e.g.,

Unclassified LA-UR-06-5303

 10

gimbals, rheostats, cryostats, etc.). XAL presents to the high-level applications programmer only hardware
objects to that are listed in the optics file. Thus, if a piece of hardware is irrelevant to high-level operations,
then it is simply omitted from this file. The hardware configuration file also provides binding between a
hardware component, other related components, and the process variables which control them. For
example, a quadrupole magnet may be listed in the configuration file, along with its bulk power supply
(i.e., a power supply connected to several quadrupole magnets) its trim coil, the process variables (signals)
that control them, and the read back signals for all.

The optics file is composed primarily of the XML elements <node>, <sequence>, <comboseq>,
<channelsuite>, and <powersupplies>. A <node> element represents a basic hardware object, such as a
wire scanner, a beam position monitor (BPM), or a steering magnet. A <sequence> element contains a
linear sequence of <node> elements representing a sector of the accelerator system. A <comboseq>
element describes the various ways that sequences may be pasted together to form viable beam paths within
the accelerator system. This feature is essential for accelerator complexes having multiple beamlines, that
is, systems where the beam may propagate down several different paths. The user of an XAL application
may select one of these possible beam paths for analysis. With the use of <comboseq> objects his or her
choice is restricted to the viable beamlines within the complex. The <channelsuite> element is the
method by which XAL associates hardware objects to their control signals. Each hardware object typically
has a “suite” of appropriate control signals by which the user may interact. For example, a steering magnet
typically has signals for setting the dipole current and observing the actual current value seen at the magnet
location. Finally, the <powersupplies> element contains a listing of all the power supplies relevant to the
XAL accelerator description. Although this element is not contained in the xdxf specification (it was
added to XAL later), it is an extremely important component of the optics file and XAL will not function
correctly without it. There should be only one <powersupplies> entry and typically it occurs at the end of
the optics file. We consider each of these XML elements in detail.

Excerpt 2 shows the initial section of a typical
XAL optics file. The first two lines are similar to that of the
main.xal file, they are XML requirements specifying the
character encoding and any XML format specifications
(e.g., the xdxf DTD specification). The next line is the first
XML element in the file, the <xdxf> element. There is only
one <xdxf> element in the optics file and it contains a
description of the all the accelerator hardware considered by
XAL. That is, the <xdxf> element is the root of the accelerator hierarchy, containing all the accelerator
hardware information in the optics file. As seen in the xdxf.dtd file, there are three required XML
attributes of the <xdxf> element, system, ver, and date. These attributes are listed in Table 1. The system
attribute is the name of the accelerator system that is described in the <xdxf> element. In Excerpt 2, its
value is “sns” indicating that the optics file describes the Spallation Neutron Source. The ver attribute
contains any versioning information associated with the file. This feature allows users to monitor changes
in the XAL configuration with a version stamp, facilitating more accurate comparisons of archived data.
The final attribute, date, contains the date in which the optics file was last built. The date value can be
expressed in the ISO 8601 standard [12], however, any date format recognized by the Java class
DateFormat [9] is valid.

<?xml version = '1.0' encoding = 'UTF-8'?>
<!DOCTYPE xdxf SYSTEM "xdxf.dtd">
<xdxf system="sns" ver="2.0.0" date="Fri Jan 27 14:08:32 EST 2006">
 <comboseq id="MEBT-DTL">
 <sequence id="MEBT"/>
 <sequence id="DTL1"/>
 <sequence id="DTL2"/>
 <sequence id="DTL3"/>
 <sequence id="DTL4"/>
 <sequence id="DTL5"/>
 <sequence id="DTL6"/>
 </comboseq>

Excerpt 2: example XAL optics file

Attribute Description
system accelerator system name
ver File version stamp
date File build date

Table 1: <xdxf> attributes

Unclassified LA-UR-06-5303

 11

2.1 Basic Hardware Objects: The <node> Element
All basic hardware elements are described

by <node> element entries within the optics file.
Excerpt 3 is an example of a typical <node> entry; in
this case the node represents a quadrupole magnet
connected to a bulk power supply and oriented for
focusing in the horizontal direction (type code
“QH”). There are three required XML attributes of
every <node> element and two optional attributes.
All these attributes are listed in Table 3. The
required attributes are type, id, and pos. The type attribute is the hardware type identifier string; these
identifiers are listed in Table 2. The id attribute contains the unique identifier string of the hardware object
which the <node> represents. This attribute is generally the same identifier given to the device in the
global database, or machine schematics. The pos attribute is the offset (in meters) of the hardware object
from the beginning of its container <sequence>. Thus, the value of pos is actually the position of the
<node> within the accelerator sector described by the parent <sequence> element. The pos attribute always
refers to the position of the <node> center location. The optional attributes of a <node> element are len
and status. The len attribute represents the length of the element, taken to be zero if absent. The status
attribute is basically now a legacy feature of XAL meant to indicate whether or not a hardware component
was on line. If present it should
always be set to “yes”.

2.1.1 Node Attribute Buckets
The first child element of the

<node> element we consider is
<attributes>. According to the
current xdxf format, this element is
required. The <attributes> entry is
meant to contain design parameters
for the <node>, called “attribute
buckets” in XAL terminology. The
<attributes> entry may optionally
contain three child elements called
<align>, <magnet>, and <rfgap>.
There are also other attribute buckets
not listed in the xdxf format that may
be contained in this section. These
buckets contain parameters for
specialized nodes that were added to
XAL later in the development, such
as parameters for the specialized ring

Attribute Description
type Type identifier (see Table 2)
id Unique identifier string
pos Position within sector (m)
len Length of hardware node (m)

status Legacy parameter (=”yes”)
Table 3: <node> element attributes

XAL Accelerator Node Types
Type

Id
XAL Class Hardware Object

BCM CurrentMonitor Beam current monitor
Bnch ReBuncher Re-buncher cavity
BPM BPM Beam position monitor
DCH HDipoleCorr Dipole corrector, hor.
DCV VDipoleCorr Dipole corrector, vert.
QH Quadrupole Quadrupole magnet, hor.
QV Quadrupole Quadrupole magnet, vert.

PMQH PermQuadrupole Permanent mag. quad.
hor.

PMQV PermQuadrupole Permanent mag. quad.
ver.

RG RfGap Radio frequency gap
WS ProfileMonitor Wire scanner
DH Bend Dipole bend magnet, hor.
DV Bend Dipole bend magnet,

vert.
RBPM RingBPM Ring BPM

<node type="QH" id="MEBT_Mag:QH01" pos=".128" len=".061" status="true">
 <attributes>
 <magnet len=".061" polarity="-1" dfltMagFld="-34.636"/>
 <align x="0.0" y="0.0" z="0.0" pitch="0" yaw="0" roll="0"/>
 <aperture shape="0" x=".016"/>
 </attributes>
 <ps main="MEBT_Mag:PS_QH01"/>
 <channelsuite name="magnetsuite">

<channel handle="fieldRB" signal="MEBT_Mag:QH01:B"
settable="false"/>

 </channelsuite>
</node>

Excerpt 3: example 6<node> element for a horizontal quadrupole magnet

Unclassified LA-UR-06-5303

 12

beam position monitors. We discuss these specialized buckets below. We shall see that the <sequence>
element may also contain attribute buckets needed to specify collective properties of the accelerator sector
which it describes. We cover sequence attribute buckets when we discuss the properties of <sequence>
elements. Finally, we point out that, as of this writing, no attribute bucket may contain child elements.
They are XML elements whose XML attributes contain design parameters of the device they are intended
to describe.

The <align> attribute bucket contains
parameters describing the measured misalignments for
the <node> element. These attributes are listed in Table
4. As seen in the table, these parameters are x, y, z, the
horizontal, vertical, and longitudinal offsets,
respectively, and pitch, yaw, roll, the angles
describing the rotational offset of the <node>. The
pitch, yaw, and roll angles are the same as that in
aeronautics, where we take the beam axis as the
eigenaxis. Specifically the pitch angle is the angle of
inclination with respect to the horizontal (rotation about the x axis), the yaw angle is the horizontal
deflection angle (rotation about the y axis), and the roll angle is the rotation about the beam axis (rotation
about the z axis). These angle are depicted graphically in Figure 6. As of the current writing, the alignment
parameters have not been utilized in the XAL model. However, they are accessible from within the
framework.

The <magnet> attribute bucket contains the
design attributes relevant to a <node> representing
some type of magnet device. The parameters of a
<magnet> attribute bucket are listed in Table 5. The
first three parameters represent general characteristics
of a magnet device. Their interpretation depends upon
the type of magnet being described in the <node> entry.
They are len, specifying the effective length of the
magnet (in meters), dfltMagFld, specifying the design
field strength of the magnet, and polarity, specifying
the field polarity. For a dipole magnet the value of
dfltMagFld is actually the field strength in Telsa.
However, for a quadrupole magnet this value represents the field gradient, in Tesla per meter. The value of
polarity is somewhat complicated, thus, we discuss it in the next paragraph. The next two parameters,
multFieldNorm and multFieldSkew, are the field components in the normal direction and the tangential
direction, respectively. For the sake of clarity, it is unfortunate that within the XAL classes, the
multFieldSkew value is actually referenced using the identifier “Tang” rather than “Skew”. For example,
you must use getTangField() rather than getSkewField() in the MagnetBucket class. There is only one
required attribute of a <magnet> attribute bucket, the len attribute.

The interpretation of the
polarity attribute is somewhat
convoluted so we cover it in some depth.
The attribute can have the values “−1” or
“+1”, meaning negative or positive
polarity, respectively. Although polarity
does determine the field direction with
respect to the design direction,
unfortunately, it actually refers
specifically to the electric current
direction with respect to its design
direction. In electromagnets the field
polarities are actually opposite to those of
the current. So a polarity value of “−1”

Attribute Description
len Effective length (m)

dfltMagFld Design field strength
polarity Field direction (-1,+1)

multFieldNorm Normal field component
multFieldSkew Tangential field component

bendAngle Dipole deflection angle (deg)
dipoleEntrRotAngle Entrance pole face angle (deg)
dipoleExitRotAngle Exit pole face angle (deg)
dipoleQuadComponent Quadru. component of dipole

pathLength Magnet path length (m) ???
Table 5: <magnet) attribute bucket parameters

Attribute Description
x Horizontal offset (m)
y Vertical offset (m)
z Longitudinal offset (m)

pitch Rotat. about x axis (deg)
yaw Rotat. about y axis (deg)
roll Rotat. about z axis (deg)

Table 4: align attribute bucket attributes

x

y
z

pitch

yaw

roll

Figure 6: alignment angles

Unclassified LA-UR-06-5303

 13

means negative current, but positive field direction. In the case of a bending magnet, polarity indicates
the bend direction while facing downstream, “−1” indicating a right bend and “+1” indicating a left bend.
To make this situation easier to remember, consider the specific situation of a horizontal bending magnet.
Then a value of “−1” indicates a bend in the negative x direction (the dipole fields point in the positive y
direction) while a value of “+1” indicates a bend in the positive x direction (the dipole fields point in the
negative y direction). When the <node> entry describes a quadrupole magnetic, a polarity value of “−1”
indicates a (horizontally) focusing quadrupole while a value of “+1” indicates a (horizontally) defocusing
quadrupole. Here, according to convention, focusing refers to focusing in the horizontal plane and negative
current means positive field producing a focusing effect. Apparently, for a dipole corrector magnet, (i.e., a
steering magnet) polarity indicates the direction of the correction. It is assumable that the situation is the
same as that for a bending dipole, for a horizontal corrector a value “−1” means that positive current
deflects in the negative x direction while a value “+1” deflects in the positive x direction.

The next five parameters of the
<magnet> attribute bucket are particular to
a dipole bending magnet. They are
bendAngle (in degrees),
dipoleEntrRotAngle (in degrees),
dipoleExitRotAngle (in degrees),
dipoleQuadComponent (unitless), and
pathLength (in meters). The bendAngle
attribute is the deflection of in the design
trajectory caused by the bend. A negative
bend angle indicates a bend to the left
(positive x direction for a horizontal
dipole) while a positive angle indicates a
bend to the right (negative x direction for
a horizontal dipole). The
dipoleEntrRotAngle is the angle of the
magnet pole face respect to the design
trajectory at the magnet entrance, while dipoleExitRotAngle is analogous angle at the exit of the magnet.
A pictorial representation of these parameters is shown in Figure 7. Note that for a horizontal bend the
angle is take positive if the pole face normal lies in the positive x bending plane. The attribute
dipoleQuadComponent specifies the quadrupole field component of the dipole magnet. Clearly for an ideal
dipole this value is zero. The pathLength attribute is the path length through the dipole magnet. In the
case of a dipole the len attribute then refers to the physical
length of the magnet, not the path length of the design
trajectory.

In the future it may be wise to create a separate
attribute bucket for each magnet type, especially since the
sextupole magnet modeling element is implemented. For
example we might have attribute buckets <dipolemag>,
<quadrupolemag>, <sextupolemag>, etc., containing
parameters specific to each device type. However, recall
that the only required attribute of a <magnet> attribute
bucket is len. Since the last four attributes are not used for
a quadrupole magnet it is not necessary to specify them in
the optics file.

The <aperture> attribute bucket specifies the <node> aperture shape and size. The <aperture>
element has three attributes, x, y, and shape. Attributes x and y state the horizontal and vertical dimensions
of the aperture (in meters), respectively, while shape is an enumerated value indicating the shape of the
aperture. The enumerations for shape attribute are listed in Table 6, along with a description of the other
attributes in the <aperture> attribute bucket. Note to specify a circular aperture of radius r, we would set
the following attributes x = r, y = r, and shape = 1.

Attribute Description

x Horizontal dimension (m)
y Vertical dimension (m)

shape Aperture geometry
0 Unknown
1 Ellipse
2 Rectangle
3 Diamond

11 Irregular
Table 6: <aperture> attribute bucket parameters

dipoleEntrRotAngle dipoleExitRotAngle

bendAngle

Figure 7: dipole bending magnet parameters

Unclassified LA-UR-06-5303

 14

The last attribute bucket in the xdxf specification is the <rfgap> bucket. Obviously, this set of
parameters describes the properties of a radio frequency gap. The important attributes of the <rfgap>
attribute bucket are length, phaseFactor, ampFactor, TTF, endcell, and gapOffset. There are additional
attributes but they are either now legacy attributes or primarily used for testing. The length attribute
specifies the length of the gap in meters. The TTF attribute is the transit time factor of the RF gap, which is
a parameter determined by the geometry of the gap. The remaining attributes are all related to the parent
<sequence> object to which the <node> belongs. Since an RF gap is assumed to be part of a larger
accelerating structure, such as a drift tube linac or elliptical cavity, a <node> representing an RF gap is
contained within a <sequence> representing such a structure. Thus, this <sequence> is some type of
electromagnetic cavity driven by a radio frequency source. The attribute phaseFactor is the ratio of the RF
phase at the first gap of the <sequence> to the
RF phase at the current gap. The attribute
ampFactor is the ratio of the RF amplitude at
the first gap to the RF amplitude at the current
gap (typically “1”). The attribute endcell is a
flag to indicate whether or not the current RF
gap is the final gap in the parent <sequence>
(“0” if not, “1” if so). The final attribute
gapOffset, specifies the offset of the gap
center relative to its specified position within
the <sequence> (given by the <node>’s pos
attribute).

Finally, we discuss two <node>
attribute buckets that are not in the xdxf
specification, <bpm> and <twiss>. The <bpm>
attribute bucket naturally applies only to beam
position monitors. It has three attributes,
length, frequency, and orientation, which
are listed in Table 8. The length attribute
specifies the length of the stripline in the beam
position monitor (in meters). The frequency attribute is the phase frequency of the beam position monitor,
which is unfortunately in megahertz rather than hertz. The final attribute, orientation, is an enumeration
indicating the direction of the leads, “-1” indicating that the leads come into the BPM from the downstream
direction, “+1” indicating the upstream direction.

The <twiss> attribute bucket lists the design Twiss (or Courant-Snyder) parameters of the beam at
the current <node>. Since the machine parameters and the beam parameters are now separately described
within the XAL framework, this attribute bucket is now essentially a legacy feature and is not seen in the
current configuration files. However, for completeness we list its attributes which should be self
explanatory: x, y, ax, bx, ex, ay, by, ey, az, bz, ez, etx, etpx, ety, etpy, mux, muy.

2.1.2 Power Supplies: The <ps> Element
Whenever a hardware object is attached to a

power supply we see a <ps> (for “power supply”)
element entry under the <node> entry. This element is
not currently listed in the xdxf format, but it is an
important part of the configuration process, XAL will
not function correctly without it. The <ps> entry is
used to indicate any power supply connected to the current <node> object, this includes differing types of
power supplies such as those for a dipole corrector magnet or a quadrupole focusing magnet. If an
application developer wishes to change the field strength of a magnet, he must do so using the power
supply object referenced by the <ps> entry. Of course, doing so will also change the field strength of any
other magnet connected to the supply. Consequently, we see that this mechanism allows XAL to handle
bulk supplies. The XML attributes of a <ps> element when seen under the context of a <node> element are
main and trim, as shown in Table 9, both optional but relevant only if at least one exists. In Excerpt 3 we
see that only the main attribute is present. Either attribute specifies the unique identifier string of a power

Attribute Description
length Gap length (m)

phaseFactor Ratio of phase at gap #1 to this gap
ampFactor Ratio of RF amp at gap #1 to this gap

TTF Transit time factor
endCell Last gap flag (0 or 1)
gapOffset Gap center offset (m)

Table 7: <rfgap> attribute bucket parameters

Attribute Description
length BPM stripline length (m)

frequency Phase frequency (MHz)
Orientation Lead orientation (-1, +1)

Table 8: <bpm> attribute bucket parameters

Attribute Description
main UID of a main power supply
trim UID of a trim power supply

Table 9: <ps> element attributes

Unclassified LA-UR-06-5303

 15

supply described in the <powersupplies> entry of the optics file. The <ps> element also has another
context, as a child of the <powersupplies> element. There, the <ps> element has different attributes. For a
full description of the XAL <powersupplies> element see Section 2.4, however, for the sake of
completeness we offer a brief description of the power supply configuration mechanism below.

In the singleton <powersupplies> entry, each power supply in the accelerator is described by a
<ps> element entry. In that context the <ps> element has two attributes, id and type (see Table 16). The
value of id is the unique identifier string of the power supply while the value of type is currently either
“main” or “trim”. If type equals “main” then the Java class type representing it in XAL is
MainMagnetSupply. If type equals “trim” then the object representing the supply is of class type
MagnetTrimSupply. The remaining part of the <ps> entry describes all the process variables connected to
the power supply. Returning to the context of a <node> element, the main attribute of <ps> points to a
power supply feeding the current <node>, which must be of type “main”. The trim attribute also points to
a connected power supply, but of type “trim”. Either of these two attributes may be present. However, the
most likely scenario is that either the main attribute appears alone, or in conjunction with a trim attribute.
The later case describes a node that is connected to both a main supply and a trim supply. There we
assume the main supply is a bulk supply feeding many nodes, but the operating point of the current node
can be varied around the quiescent point using the trim supply. Typically there are also a readback signals
directly listed in the <node> element’s channelsuite to verify the magnet strength (see Section 2.1.3).

2.1.3 Node Connectivity: The <channelsuite> and <channel> Elements
The last section of a <node> entry is the <channelsuite> element. The <channelsuite> element

contains a listing of all the signals specifically associated with that <node>. A <channelsuite> element has
an optional attribute name, which contains the identifier of the channelsuite. This is not a unique identifier.
It is primarily present as a description of the signal set. For example, in Excerpt 3 we see that the name
attribute has the value “magnetsuite”, implying that this is the set of channels for a magnet.

Appearing under the <channelsuite> element
is a listing of <channel> elements connected to the
parent <node>. The <channel> element is the
mechanism by which XAL and the underlying
communications protocol (e.g., EPICS) are bound.
Each <channel> element describes a control signal
connected to the parent <node>. The <channel>
element uses three attributes describing this signal, handle, signal, and settable. These attributes are
listed in Table 10. The handle attribute specifies the name binding of the channel used internally within
XAL. This attribute is very important. It indicates the type of communications channel and binds the
channel to the XAL device field. For example, in Excerpt 3 we see that the handle attribute of the
<channel> entry in the <channelsuite> has the value “fieldRB”. Thus, XAL knows that this is a
readback signal for a horizontal quadrupole magnet and, thus, binds the channel to the getField() method
of the Quadrupole object representing that <node>. We discus this topic further in the next paragraph.
The signal attribute is the channel name of process variable represented by the <channel>. When EPICS
is used as the communications protocol, the value of signal is the EPICS channel name. The last attribute,
settable, indicates whether or not the channel is bi-directional. That is, can the user modify the value or
state of the <channel> object. If the <channel> is a readback process variable, this value is “0”, otherwise
it is “1” indicating that it is “settable”.

Within XAL itself, a channel is represented by an instance of the class Channel. Seldom should it
be necessary to interact directly with a Channel object, these objects are usually encapsulated by the
methods of classes representing hardware devices. However, if it is absolutely necessary to work with a
Channel object (this typically results in less portable code), there are means to acquire references to them.

In XAL’s current state, the channel handles (i.e., the handle attribute of a <channel> entry) are
hard-coded in the classes representing the hardware objects. All of these classes are children of the class
gov.sns.xal.AcceleratorNode and belong to the Java package gov.sns.xal.smf. In the future it may be
wise to bind the channel handles with a properties file so they exist in a common location. A convenient
method for determining the channel handles is to consult the Javadoc for XAL. Regrettably however,

Attribute Description
handle Internal XAL channel handle
signal Channel name

settable Bidirectional channel flag
Table 10: <channel> element attributes

Unclassified LA-UR-06-5303

 16

much of the Javadoc for the gov.sns.xal.smf package is currently incomplete, so it is quite probable that
one may not find the desired value there. Thus, the safest method is unfortunately also the most
inconvenient, direct inspection of the source code for the node type under consideration. To help mitigate
the inconvenience we list the set of current channel handles in Table 23 of Appendix B, with the caveat that
these values may change in the future.

2.2 Accelerator Sectors: The <sequence> Element
Accelerator sectors are described with the <sequence> element in the xdxf format. Typically a

<sequence> element contains a linear listing of <node> elements, each describing a particular hardware
object in the beamline. However, <sequence> objects can also contain other elements, specifically
<attributes>, <channelsuite>, and even other <sequence> objects. In the later case a <sequence>
element is nested in another <sequence> element in order to described composite accelerator components.
There are no restrictions on the depth of this nesting. If a <channelsuite> element appears under a
<sequence> listing, it is assumed that the sequence describes some type of macro device with collective
properties, such as an RF cavity. Typically, then, the <channelsuite> element will contain a listing of all
the control process variables associated with that macro device (e.g., RF amplitude, RF phase, etc.).
Finally, as with a <node> element, the <sequence> element also has a set of attributes. These parameters
listed under the <attributes> child element and describing collective properties of the sequence.

Excerpt 4 shows an example <sequence> element entry in the XAL optics file. This particular
sequence represents a rebuncher cavity and contains only one <node> object, an RF gap. The rest of the
<sequence> entry contains the process variables associated with the rebuncher, under the <channelsuite>
listing, and the attribute buckets of the <sequence>, under the <attributes> element. Note also the XML
attributes of the <sequence> element, these are also essential for XAL operation. We cover all of these
points in this subsection.

<sequence type="Bnch" id="MEBT_RF:Bnch01" pos=".528" len=".13" status="true">
 <attributes>
 <align x="0.0" y="0.0" z="0.0" pitch="0" yaw="0" roll="0"/>
 <sequence predecessor=”null”/>
 <rfcavity amp="1.3"
 TTFCoefs=".445, 0, 0"
 TTFPrimeCoefs="0, 0, 0"
 STFCoefs="0, 0, 0"
 STFPrimeCoefs="0, 0, 0"
 TTF_endCoefs=".445, 0, 0"
 TTFPrime_EndCoefs="0, 0, 0"
 STF_endCoefs="0, 0, 0"
 STFPrime_endCoefs="0, 0, 0"
 structureMode="0"
 phase="-90" freq="402.5"/>
 </attributes>
 <channelsuite name="rfsuite">
 <channel handle="cavAmpSet" signal="MEBT_LLRF:FCM1:CtlAmpSet" settable="true"/>
 <channel handle="cavPhaseSet" signal="MEBT_LLRF:FCM1:CtlPhaseSet" settable="true"/>
 <channel handle="cavAmpAvg" signal="MEBT_LLRF:FCM1:cavV" settable="false"/>
 <channel handle="peakErr" signal="MEBT_LLRF:FCM1:PeakErr" settable="false"/>
 <channel handle="regErr" signal="MEBT_LLRF:FCM1:RegErr" settable="false"/>
 <channel handle="resErrAvg" signal="MEBT_LLRF:ResCtrl1:ResErr_Avg" settable="false"/>
 <channel handle="cavPhaseAvg" signal="MEBT_LLRF:FCM1:cavPhaseAvg" settable="false"/>
 <channel handle="deltaTRFStart" signal="MEBT_LLRF:FCM1:deltaTRFStart" settable="true"/>
 <channel handle="deltaTRFEnd" signal="MEBT_LLRF:FCM1:deltaTRFEnd" settable="true"/>
 <channel handle="tDelay" signal="MEBT_LLRF:FCM1:tDelay" settable="true"/>
 </channelsuite>
 <node type="RG" id="MEBT_RF:Bnch01:Rg01" pos="0">
 <attributes>
 <rfgap length="0.13" phaseFactor="0" ampFactor="1" TTF="0.445" endCell="0"
 gapOffset="0"/>
 </attributes>
 </node>
</sequence>

Excerpt 4: example <sequence> listing

Unclassified LA-UR-06-5303

 17

2.2.1 Sequences Representing RF Cavities
Since XAL very often uses sequence elements to represent RF accelerating structures, we digress

briefly to review RF cavities in general and elaborate specifically on how they are modeled in XAL.
Consider Figure 8 where we depict a model of an RF cavity. Figure 8a) shows a four-cell superconducting
elliptical cavity while Figure 8b) shows our generalized model for all RF cavity structures. The elliptical
cavity is included to demonstrate how most accelerating structure geometries can be considered under the
current model. In the figure each gap has an index n = 1,2,…,N; the index n = 0 is reserved for the entrance
to the cavity. We denote by Wn the energy of the beam before entering gap n and Wn+1 the energy of the
beam after gap n. For example, W0 is the energy of the beam entering the cavity and W1 is the beam energy
after the first gap. Likewise, denote the particle phase at the center of each gap as φn, reserving φ0 for the
particle phase at the moment it enters the cavity. Thus, φ0 actually represents a process variable, the phase
of the driving RF klystron.

Now consider a single
beam particle propagating on-axis
through the RF cavity. Its
location is described completely
by the path length parameter s.
Within an RF cavity there is a
longitudinal electric field Ez which
accelerates our beam particle.
This field Ez has the time varying
form Ez(s;t) = Ez(s)cos(ωt+φ0)
where ω is the angular frequency
of the RF and φ0 is the phase
offset. Letting φ(s) represent the
phase of the particle (with respect
to the RF) at axial position s =
s(t), then the field seen by the
particle is given by Ez(s)cos[φ(s)].
Accordingly, the energy W(s) of
this particle is given by its initial
energy W0 (upon entering the
cavity) plus the work done on it by the axial field Ez. We have

(1)

()

,)()(

,)(cos)()(

0
0

0
0

∫

∫

+=

+=

s

s

z

dks

dEqZWsW

σσφφ

σσφσ

where q is the unit charge, Z is the particle charge-state number, and k(s) is the wave number at axial
location s. Although presented as a function of path length s, the wave number k is more specifically a
function of the particle normalized velocity β, which is in turn a function of s (due to the accelerating
fields). (Note cs /&≡β , where c is the speed of light.) We have

(2)
λβ

π
)(

2)(
s

sk ≡ ,

where λ is the RF wavelength in free space. Eqs. (1) are more or less exact, however, they are not terribly
useful for analysis, or even computation. The difficulty arises in that these integral equations are coupled
due to the particle velocity’s implicit dependence on particle energy, that is, β(s) = β(W(s)). There are
some simplifying assumptions that reduce Eqs. (1) to a more manageable set.

ss1 s2 s3 s40

ss1 s2 s3 s40 sN

L0 L1 L2 L3 LN

gap

a) elliptical cavity

b) general cavity model

(V0,φ0)

Figure 8: RF cavity model

Unclassified LA-UR-06-5303

 18

When the particle velocity β is constant, say through a drift, the wave number k is also constant.
In this situation the equations in (1) decouple and have a straightforward solution. Now consider when the
change in velocity β is small within a gap. We can approximate the particle phase φ(s) through gap n as

sks nn +≈ φφ)(where φn is the mid-gap particle phase at n and λβπ nnk /2≡ is the mid-gap wave number

using the mid-gap velocity nβ of gap n. Using cos(φn+ nk s) = cos(nk s)cos(φn) − sin(nk s)sin(φn) for each
gap n yields the familiar result for the energy gain involving the generalized transit time factors S and T.
Specifically, the energy gain ΔWn imparted to the beam by cavity gap n is given by the formula [16][24]

(3) []nnnnnnn kSkTqZVW φφ sin)(cos)(0 −=Δ

where V0 is the klystron drive voltage, nk is the mid-gap wave number of gap n, and φn is the particle
phase at the gap center. The quantities Tn(k) and Sn(k) are the transit-time factors for the longitudinal field
Ez,n(s) generated by gap n. Mathematically these quantities are the Fourier cosine and sine transforms,
respectively, of Ez,n(s) ≡ Ez(s−sn). They are defined as follows:

(4)

,)(sin)(1)(

,)(cos)(1)(

2/

2/0

2/

2/0

∫

∫
+

−

+

−

−−≡

−−≡

nn

nn

nn

nn

ls

ls
nnzn

ls

ls
nnzn

dssskssE
V

kS

dssskssE
V

kT

where ln is the length of gap n (this may be somewhat arbitrary depending upon cell geometry). The
functions Tn(k) = Tn(β) and Sn(k) = Sn(β) can be numerically computed for particular cavity geometries
using an electro-dynamics code such as SUPERFISH [3]. They essentially define the dynamics of each gap
n.

In the above model the energy increase ΔWn in a beam particle is applied impulsively at each gap
n. In the longitudinal phase space (φ,W) any such change in energy ΔW must be accompanied by a
corresponding change in phase Δφ to preserve the phase space volume (i.e., Liouville’s theorem). This
phase change Δφn for gap n is given by

(5) [] [] dssW
W
Wk

dsksksks
n

n

nn

nn

nn

nn

ls

ls

n
ls

ls
n

lss
lssnn ∫∫

+

−

+

−

+=
−= Δ

∂
∂

≈−=−=Δ
2/

2/

2/

2/

2/
2/)(

)(
)()(φφ ,

According to our initial approximation for ΔWn, the expression for ΔW(s) in the interval s ∈
[sn−ln/2,sn+ln/2] is given by

(6) ()∫
−

+≈Δ
s

ls
nnnz

nn

dkEqZsW
2/

, cos)()(σφσσ .

Inserting this expression into that for Δφn and integrating by parts yields the following approximation for
change in phase at the gap center:

(7)
[]

[],sin)(cos)(2

,sin)(cos)()(

233
0

0

nnnnnn
nn

nnnnnn
n

n

kTkS
Amc

qZV

kTkSqZV
W
Wk

φφ
γβλ

π

φφφ

′+′=

′+′
∂

∂
−≈Δ

where A is the atomic mass number of the beam particle, and we have used the chain rule ∂k/∂W =
(∂k/∂β)(∂β/∂W) and the assumption that Ez,n(sn−ln/2) = Ez,n(sn+ln/2) = 0. These results are essentially a
generalization of those seen in references [16] and [24].

Unclassified LA-UR-06-5303

 19

A few remarks are in order concerning the longitudinal dynamics model we have just developed.
For an “ideal gap” and a coordinate system with origin at the gap center, the ideal field Ez(s) is an even
function of s and thus Sn(k) = 0. There we recognize Tn(k) as the usual transit time factor for an RF gap
seen in the literature [24]. Note that we have implicitly assumed that the total axial field Ez(z) can be
decomposed into components Ez,n(z) generated by each gap n, this decomposition may be somewhat
arbitrary for some accelerating structures. We have also said nothing about how to compute any of the
mid-gap values, such as the }{ nk . Determining these mid-gap values can be nontrivial and techniques for
doing so are described in reference [16]. The accuracy of Eqs. (3) and (7) becomes questionable when the
velocity β does change significantly while the particle traverses the gap, for example, in the case of a low-
energy electron beam. Clearly then the formulae are most accurate for heavier beam particles. For lighter
beam particle species we may require a more accurate description of the longitudinal dynamics, such as that
presented in reference [19].

Finally we point out that the maximum energy gain in gap n possible for a given klystron voltage
V0 is found by maximizing ΔWn with respect to φn. This maximizing value of φn, say φn,c solves the
equation ∂ΔWn/∂φn = 0 and is given by

(8)
)(
)(

arctan,
nn

nn
cn kT

kS
−=φ .

Moreover, the energy gains are also functions of the mid-gap wave numbers }{ nk which are dependent
upon the klystron phase φ0 and amplitude V0.

2.2.2 Sequence Attributes
Just as with the <node> element, a

<sequence> element has XML attributes. These
attributes describe the collective properties of the
sequence object. There is one required XML
attribute of every <sequence> element and three
optional attributes. All these attributes are listed
in Table 12. The required attribute is id, the
unique identifier string for the
<sequence>. Typically the value of this
attribute is the accelerator sector that it
represents, for example DTL1, DTL2,
CCDTL1, etc. The optional attributes
are type, pos, and len. The type
attribute is the hardware type identifier
string; this attribute is similar to the
type attribute of the <node> element. If
present, the type attribute informs XAL
that the sequence represents a
recognized composite element and, accordingly, XAL creates a special software object to represent it. The
recognized type identifiers are listed in Table 11. The pos attribute is the offset (in meters) of the
<sequence> from the beginning of its parent <sequence> object. If the current <sequence> object is a
direct child of the top-level <xdxf> element then the pos attribute is the offset of within entire beamline
described in the optics file. Thus, the value of pos is the absolute position of the <sequence> along the
beamline. As with the <node> element, pos is the position of the center of the <sequence> object. The len
attribute represents the total length of the <sequence>. This attribute together with the pos attribute are
necessary to describe the drift regions between sequences. (The length of this drift is given by the
difference between the pos attribute and the sum of the pos and len attributes of the previous <sequence>.)
In retrospect these attributes should have been required attributes since they are taken as zero if absent,
potentially creating a precarious inconsistency. Consequently one should always provide the pos and len
attributes regardless.

XAL Sequence Types
Type Id XAL Class Hardware Object

CCL CLL Coupled-cavity linac
DTLTank DTLTank Drift-tube linac cavity

Bnch ReBuncher Re-buncher cavity
RF RfCavity Generic RF Cavity

SCLCavity SCLcavity Super-conducting linac

Table 11: sequence type identifier strings

Attribute Description
id Unique identifier string
type Type identifier (see Table 11)
pos Position within parent (m)
len Length of sector (m)

Table 12: <sequence> element attributes

Unclassified LA-UR-06-5303

 20

2.2.3 Sequence Attribute Buckets
Just as with <node> elements, <sequence>

elements may have attribute buckets, which are
listed in their <attributes> child section. Valid
attribute buckets for a <sequence> object include
the <alignment> bucket, which is the same as that
for a <node> element listed in Table 4. Additional attribute buckets are the <sequence> bucket (an
unfortunate choice in nomenclature) and the <rfcavity> bucket. The <sequence> attribute bucket is quite
simple with only one attribute, predecessors, shown in Table 13. This value of this attribute is a space de-
limited list of <sequence> id’s which may precede the current <sequence> object in the beamline. In this
manner, XAL knows that the current sequence may be placed after these predecessors to form viable beam
paths. Referring to Excerpt 4 we see that the <sequence> attribute bucket has its predecessors attribute
set to “null”. This situation indicates that the sequence has no other sequences preceding it, that is, it is the
beginning of the beamline. The last possible attribute bucket, <rfcavity>, is significantly more complex.

A listing of all possible parameters of
an <rfcavity> attribute bucket is given in
Table 14. Clearly this attribute bucket applies
only to <sequence> objects representing some
type of accelerating RF structure. This
structure is assumed to be composed of RF
gaps, for which many of the <rfcavity>
parameters apply. The first three parameters
are rather straightforward, amp, phase, and
freq. These are all design parameters for the
cavity whose values indicate its drive
amplitude (unfortunately in kV rather than
Volts), its drive phase (in degrees), and its
resonant frequency (unfortunately in MHz
rather than Hz), respectively. The next two
parameters, ampFactor and phaseOffset, are
conversion parameters from actual values to
process variable (PV) values. Specifically, the
parameter ampFactor is the ratio of the true RF
amplitude seen at the cavity input (i.e., V0)
versus the values of the amplitude process
variables. For the RfCavity object (<sequence> type value “RF”) these process variables are those
identified with the channel handles cavAmpAvg and cavAmpSet (see Table 23 of Appendix B). The
phaseOffset attribute is the difference between the phase at the entrance of the cavity (i.e., φ0) and the
klystron phase process variables. These process variables are identified by the XAL channel handles
cavPhaseAvg and cavPhaseSet (see Table 23). Thus, ampFactor and phaseOffset are correction factors
which may be utilized in case the amplitude and phase process variables differ from that seen at the cavity.

The next eight parameters of the <rfcavity> attribute bucket all contain modeling parameters
characterizing the transit time functions T(β) and S(β), and their derivatives T’(β) and S’(β). Note that
XAL takes the transit time function to be functions of normalized particle velocity β, rather than the wave
number k as defined in Eqs. (4). This situation is simply more convenient, to convert from T(k) and S(k) to
T(β) and S(β) we simply substitute Eq. (2) for k. Within the XAL model, each of the functions T(β), S(β),
T’(β) and S’(β) are expanded as quadratic functions of β. Thus, the attributes TTFCoefs, STFCoefs,
TTFPrimeCoefs, STFPrimeCoefs contain the coefficients of the expansions for T(β), S(β), T’(β) and S’(β),
respectively. For example, given the entry TTFCoefs=”a b c” where a, b, c are some real-number formats,
then we take

(9) 2)(βββ cbaT ++= ,

likewise with all the other transit time functions. The attributes TTF_endCoefs, TTFPrime_EndCoefs,
STF_endCoefs, and STFPrime_endCoefs appear in case the transit time functions for the end cells in the RF

Attribute Description
predecessors List of valid sequence id’s

Table 13: <sequence> attribute bucket parameters

Attribute Description
amp Design amplitude (kV)
phase Design phase (degrees)
freq Resonant frequency (MHz)

ampFactor Ratio of True/PV amplitude
phaseOffset Difference True−PV phase
TTFCoefs Even field TTF expansion

TTFPrimeCoefs Even field TTF’ expansion
STFCoefs Odd field TTF expansion

STFPrimeCoefs Odd field TTF’ expansion
TTF_endCoefs End cell expansion

TTFPrime_EndCoefs End cell expansion
STF_endCoefs End cell expansion

STFPrime_endCoefs End cell expansion
structureMode 0 or π mode (0, 1)

qLoaded Quality factor under load
structureTTF TTF used in LLRF

Table 14: <rfcavity> attribute bucket parameters

Unclassified LA-UR-06-5303

 21

cavity are different from those of all the initial cavity cells. If the cavity has identical transit time functions
for each gap then these attributes values should be the same as those of their respective primary cell
attributes.

The final three parameters of the <rfcavity> attribute bucket are structureMode, qLoaded, and
structureTTF. The structureMode attribute indicates whether the cavity is being operated in normal
mode or π mode (where the longitudinal field Ez changes sign at each cell boundary). A value of “0”
indicates normal mode and a value of “1” indicated π mode. The value of qLoaded is the fully loaded
quality factor of the cavity, that is, the quality factor including all external contributions including the
beam. The final attribute, structureTTF, is the transit time factor used by the low-level RF system.

2.2.4 Sequence Connectivity: The <channelsuite> Element Revisited
Analogous to <node> elements, <sequence> elements may also have a <channelsuite> section.

As with the <node> element, the <channelsuite> element contains a listing of all the signals associated
with that <sequence> as a composite accelerator component. The syntax and format of a <channelsuite>
element is identical to that of a <node>. Specifically, a <channelsuite> contains a list of <channel>
elements, each of which describes a process variable connected to the parent <sequence>. Again, the
attributes of a <channel> are listed in Table 10 and their descriptions, along with a description of
<channelsuite>, are presented in Section 2.1.3. Typically, the process variables described by the
<channel> entries of a <sequence> are those for an RF cavity, since sequences most often describe RF
cavities. Thus, the channel handles for the RfCavity object in Table 23, Appendix B, are the one most
often seen. This is the situation seen in Excerpt 4.

2.3 Combination Sequences: The <comboseq> Element
The initial section of the XAL optics file

usually contains a set of <comboseq> blocks, each
containing a list of <sequence> elements. This
feature is primarily a convenience to XAL users
where <sequence> objects may be grouped
together to form larger composite lattice objects
making sense in the context of the current
accelerator complex. For example, in Excerpt 2 we
see a <comboseq> entry describing the aggregation of
seven <sequence> objects consisting of a Medium
Energy Beam Transport (MEBT) plus six Drift-Tube
Linac (DTL) tanks. The composite object is then
called “MEBT-DTL”. There it is assumed that the
“MEBT-DTL” composite is frequently analyzed in
this configuration.

As mentioned above, a <comboseq> element
contains a consecutive listing of <sequence>
elements. The only attribute of a <comboseq>
element is id, as shown in Table 15. The value of
id is the unique identifier string for the described
combination sequence. The child elements of a
combination sequence, that is <sequence> elements,
also have only attribute, also called id. The value of
id in this case refers to the unique sequence
identifier of the sequence within the combination
sequence.

2.3.1 Working with Sequences and
Combinations Sequences
Figure 9 shows an example XAL

application built from the XAL Application
Figure 9: example application menu with combination sequences

Attribute Description
id identifier of combination sequence

Table 15: <comboseq> element attributes

Unclassified LA-UR-06-5303

 22

Framework. The Application Framework provides the Accelerator menu from which any of the
sequences or combination sequences described in the optics file can be selected. (The Accelerator menu
also enables you to load the main XAL file describing the accelerator complex.) As seen in Figure 9, the
Accelerator/Sequences selection brings up a child menu of all the sequences and combination sequences
described in the optics file. The user need only select the accelerator section that he or she wants to analyze.
Also shown in the figure is the option of creating new combination sequences, which can then be analyzed,
as well as those stored in the optics file for later use.

2.4 Power Supplies: The <powersupplies> element
The optics file contains a single instance of the <powersupplies> element, although this single

element is typically a large listing. This element usually occurs at the end of the optics file, after all the
<sequence> elements are defined. Located under the <powersupplies> element is a listing of all the power
supplies used in the accelerator description. The direct children of <powersupplies> are <ps> elements,
which describe the actual power supplies. Each <ps> element contains a <channelsuite> entry listing all
the channels connected to that supply. An example of the this syntax for listing the power supplies of an
accelerator is shown in Excerpt 5.

Although the <powersupplies> entry is not defined in the xdxf.dtd file, it is important that this
information be included in the optics file, and with the syntax shown in Excerpt 5. This mechanism is how
XAL binds beamline devices in the <sequence> entries to their power supply process variables. As
mentioned in Section 2.1.2 this is also the method for defining bulk power supplies for multiple devices,
such as that for quadrupole magnets. The power supply is defined once in the <powersupplies> section,
and the magnets each reference it using the <ps> element within the magnet <node> definition.

The <powersupplies> element itself has no
XML attributes. It simply marks the listing of power
supply entries. Different from its context under a
<node> element (see Section 2.1.2), the <ps> element
here has two attributes, id and type. The value of id
is the unique identifier string of the power supply
while the value of type is currently either “main” or
“trim”. If type equals “main” then the software object representing it in XAL is of Java class type
MainMagnetSupply. If type equals “trim” then the object representing the supply is of class type
MagnetTrimSupply. The remaining part of the <ps> entry describes all the process variables connected to
the power supply. As shown in Excerpt 5 this action is accomplished with a single <channelsuite>
element. The <channelsuite> element here is the same as that for a <node> element described in Section

<powersupplies>
 <ps type="main" id="MEBT_Mag:PS_DC">
 <channelsuite name="pssuite">
 <channel handle="I" signal="MEBT_Mag:PS_DC:I"/>
 <channel handle="I_Set" signal="MEBT_Mag:PS_DC:I_Set"/>
 <channel handle="fieldSet" signal="MEBT_Mag:PS_DC:B_Set"/>
 <channel handle="psFieldRB" signal="MEBT_Mag:PS_DC:B"/>
 <channel handle="cycleState" signal="MEBT_Mag:PS_DC:cycleState"/>
 <channel handle="cycleEnable" signal="MEBT_Mag:PS_DC:cycEnable"/>
 </channelsuite>
 </ps>
 <ps type="trim" id="CCL_Mag:ShntC_QTV309">
 <channelsuite name="pssuite">
 <channel handle="trimSet" signal="CCL_Mag:ShntC_QTV309:B_Set"/>
 <channel handle="trimRB" signal="CCL_Mag:ShntC_QTV309:B"/>
 <channel handle="trimI_Set" signal="CCL_Mag:ShntC_QTV309:I_Set"/>
 <channel handle="trimI" signal="CCL_Mag:ShntC_QTV309:I"/>
 <channel handle="cycleState" signal="CCL_Mag:ShntC_QTV309:cycleState"/>
 </channelsuite>
 </ps>

…
</powersupplies>

Excerpt 5: example <powersupplies> entry in XAL optics file

Attribute Description
id UID string of power supply
type supply type (“main” or “trim”)

Table 16: <ps> element attributes under <powersupplies>

Unclassified LA-UR-06-5303

 23

2.1.3. The channel suite contains a listing of each <channel> object connected to the power supply, each
channel being described by its XAL handle and the signal name of the process variable. The channel
handles used here are typically those of the last three entries of Table 23, Appendix B, specifically, the
classes MagnetPowerSupply, MainMagnetSupply, and MagnetTrimSuppply.

3 Timing Process Variables: The <timing_source> File
XAL supports the

inclusion of several high-level
timing signals that the
application developer can
monitor. A separate XML
file, called the timing file,
defines all the timing signals
available to an XAL developer.
As seen in Excerpt 1, this file
is tagged <timing_source> in
the main XAL configuration
file main.xal. The url
attribute of the
<timing_source> element
points to the timing file.
Although it is likely that these
timing signals seldom will be
used, they are available and we
outline the configuration
method. This configuration
mechanism is much simpler
than that for the optics
configuration; it basically

Handle Description
trigger Trigger flag – 0 triggered, 1

counting
mode Trigger mode – 0 continuous, 1

single
countDown Number of beam pulses
count Pulse number during countdown
repRate Overall repetition rate
beamOnEvent ??
beamOnEventCount Beam on event counter
diagnosticDemandEvent ??
diagnosticDemandEventCount Diagnostic demand event counter
slowDiagnosticEvent Slow (1 Hz) diagnostic event
slowDiagnosticEventCount Slow diagnostic event counter
fastDiagnosticEvent Fast (6 Hz) diagnostic event
fastDiagnosticEventCount Fast diagnostic event counter
ringFrequency Readback of ring frequency (MHz)
machineMode Machine mode ?

Table 17: timing channel handles

<?xml version = '1.0' encoding = 'UTF-8'?>
<!DOCTYPE timing SYSTEM "xdxf.dtd">
<timing>
 <channelsuite name="timingsuite">
 <!-- beam trigger PV: 0=Trigger, 1=Counting -->
 <channel handle="trigger" signal="ICS_Tim:Gate_BeamOn:SSTrigger"/>
 <!-- beam trigger mode PV: 0=Continuous, 1=Single-shot -->
 <channel handle="mode" signal="ICS_Tim:Gate_BeamOn:SSMode"/>
 <!-- specify how many beam pulse(s) -->
 <channel handle="countDown" signal="ICS_Tim:Gate_BeamOn:SSCountDown"/>
 <!-- readback while it's counting down -->
 <channel handle="count" signal="ICS_Tim:Gate_BeamOn:SSCount"/>
 <!-- readback of overall rep rate -->
 <channel handle="repRate" signal="ICS_Tim:Gate_BeamOn:RR"/>
 <!-- beam on event -->
 <channel handle="beamOnEvent" signal="ICS_Tim:Util:event36"/>
 <!-- beam on event counter -->
 <channel handle="beamOnEventCount" signal="ICS_Tim:Util:event36Count"/>
 <!-- diagnostic demand event -->
 <channel handle="diagnosticDemandEvent" signal="ICS_Tim:Util:event45"/>
 <!-- slow (1 Hz) diagnostic event -->
 <channel handle="slowDiagnosticEvent" signal="ICS_Tim:Util:event46"/>
 <!-- fast (6 Hz) diagnostic event -->
 <channel handle="fastDiagnosticEvent" signal="ICS_Tim:Util:event47"/>
 <!-- Machine mode -->
 <channel handle="machineMode" signal="ICS_Tim:MPS_Mode:MachMode"/>
 </channelsuite>
</timing>

Excerpt 6: XAL Timing File

Unclassified LA-UR-06-5303

 24

consists of a single <channelsuite> entry.

An example timing file is shown in Excerpt 6. The first two lines are the standard XML
statements designating the version, character encoding, name of the document, and the DTD file associated
with the document (which, again, is xdxf.dtd). On the next line starts the root element, <timing>. There
are no attributes to this element. It simply contains one child element, a <channelsuite> element, listing
all the timing channels of the accelerator. The <channelsuite> element is used here just as it is in Section
2.1.3. However, here we are directly populating an instance of the Java class TimingCenter with the listed
Channel objects. As mentioned in Section 1.4, the TimingCenter object is attached to the main
Accelerator object. Thus, to acquire a timing signal, the developer must first reference the TimingCenter
through the Accelerator object, then work with the appropriate channel handle.

The supported channel handles are defined in the TimingCenter class. Table 17 lists all the
channel handles currently supported by the TimingCenter class along with a description of each. However,
since we work directly with Channel objects in this case, it is possible to define your own channel handle
within the timing file and request it directly with the method TimingCenter.getChannel(String
channelHandle).

4 Auxiliary Data: Using the <tablegroup_source> Element
Most of the high-level machine hardware in

an accelerator system can be described in the XAL
optics file. However, not all information required by
XAL is contained in this file. A prime example is the
beam data that XAL needs to describe and simulate
the beam. These data are not included in the optics
file because they do not describe the machine; the optics file is formatted strictly as a machine description
mechanism. Any data not supported by the XAL optics file may be included using a separate mechanism
called a table group.

A table group allows arbitrary data to be made available to application users and developers within
the XAL framework. It is essentially a miniature database, the data itself being contained in tables within
an XML file. The structure of this data file is described in Section 4.1. The location of the data file is
identified in the main XAL configuration file (main.xal) using a <tablegroup_source> element entry.
Such an entry is demonstrated in Excerpt 1 for the case of the modeling parameters. In the excerpt we see
the two attributes of the <tablegroup_source> entry, name and url, which are listed in Table 18 with a
description. The name attribute contains the unique string identifier of the table group. This identifier
string is used to reference the data tables forming the table group. XAL has a special container called an
edit context which contains all the table groups listed in the main.xal file (discussed below). The value of
the url attribute is the URL of the table group’s data file. The data within this file is loaded and converted
to data tables when the XAL configuration file is read. Referring to Excerpt 1, the URL of the table group
named “modelparams” is model.param, which is assumed to be in the same directory as main.xal.

The edit context object referred to above is of Java type EditContext. Within XAL, it is a
singleton class, meaning there is only one EditContext instance within the entire XAL framework. The
edit context singleton is accessed from the main Accelerator object with a call to the method
Accelerator#editContext(). From there, individual table groups may be retrieved with the accessor
EditContext#getTablesForGroup(String name). Programmatically, a table group is actually a Java
Collection of DataTable objects. Thus, the primary objects of a table group are DataTable instances.
Analogous to tables in a database, each DataTable is composed of a set of related data records. However,
unlike a database, application developers may register with the edit context to receive event notification
whenever data in the tables, or the tables themselves, are changed. The details of this mechanism are,
however, beyond our current scope.

4.1 Basic Form of a <tablegroup> Element
For any table group specified by a <tablegroup_source> element, the data file is an XML file

with the document type definition file tablegroup.dtd. The contents of tablegroup.dtd are listed in

Attribute Description
name ID within accelerator EditContext
url URL of XML data file
Table 18: <tablegroup_source> element attributes

Unclassified LA-UR-06-5303

 25

Appendix C. Each table group file consists of one <tablegroup> element with one or more <table>
children. There are no restrictions on the number of <table> elements within a table group file.

Excerpt 7 lists a simple table group
data file. The first two lines are boiler plate
XML as seen before, the second line
indicating that the DTD file is
tablegroup.dtd. The third line is the
singleton <tablegroup> element entry.
Within this particularly simple table group, there is only one <table> entry (recall that there can be many).
The purpose of this particular table is to list the properties of several different particles. Each <table>
element has two attributes: name, which is required, and recordClass, which is optional. These attributes
are listed in Table 19 along with brief descriptions. The name attribute contains the table’s unique identifier
string. This identifier facilitates access to the particular data table within the table group. The
recordClass attribute specifies the Java class type of the records within the data table. In Excerpt 7 we see
that the value there is GenericRecord, which is, in fact, its default value. The Java class GenericRecord is
suitable for most all table records within a table and it is unlikely that one would need to implement a
specialized class here. Thus, one seldom sees the recordClass attribute actually specified in the <table>
element entry.

As seen in the table group DTD file of Appendix C and in Excerpt 7, there are two types of child
elements for a <table> entry, <schema> and <record>. According to the DTD specification, there is
exactly one <schema> element, which then may be following by any number of <record> elements. The
<schema> element specifies the “schema” of the table, specifically, the structure of the data records
contained in the current table. The <record> elements contain the actual data of the data table. There are
no child elements of a <record> element, only attributes. The attributes of the <record> element are
described in the table’s <schema> entry, and each represents a field of the data record.

A table’s <schema> element has no XML
attributes, only child elements which are all of type
<attribute>. This set of <attribute> elements
describes completely the structure of the data
records within the table. Specifically, each
<attribute> entry identifies a field in the data
record. The <attribute> element has no children,
only attributes. The four (XML) attributes of an
<attribute> element are listed in Table 20. They are name, type, isPrimaryKey, and defaultValue. All
attributes are required except the defaultValue attribute, which may be omitted. The name attribute
contains the name of the field in the data record. The type attribute specifies the Java class type for the
field, that is, how its value is stored programmatically within the record. This specification is necessary
because attributes of XML elements are all stored internally as strings and it is necessary to convert the
string values to their proper representation within XAL. The attribute isPrimaryKey is a Boolean flag
(value “true” or “false”) specifying whether or not the field is a primary key of the record.

<?xml version = '1.0' encoding = 'UTF-8'?>
<!DOCTYPE particles SYSTEM "tablegroup.dtd">
<tablegroup>
 <table name="species" recordClass="gov.sns.tools.data.GenericRecord">
 <schema>
 <attribute type="java.lang.String" name="name" isPrimaryKey="true"/>
 <attribute type="java.lang.Double" name="charge" isPrimaryKey="false"/>
 <attribute type="java.lang.Double" name="mass" isPrimaryKey="false"/>
 </schema>
 <record charge="-1.0" name="ELECTRON" mass="5110000.0"/>
 <record charge="1.0" name="PROTON" mass="9.38272E8"/>
 <record charge="-1.0" name="HMINUS" mass="9.393014E8"/>
 </table>
</tablegroup>

Excerpt 7: example table group data file

Attribute Description
name Table ID within accelerator EditContext

recordClass Java class of data record
Table 19: <table> element attributes

Attribute Description
name Name of the record field
type Java class type of record field

isPrimaryKey Record field’s primary key flag
defaultValue Default value of the record field

Table 20: <attribute> element attributes

Unclassified LA-UR-06-5303

 26

Programmatically, table records are retrieved by the values of their primary keys. Thus, to be able to select
a particular record in a table, one must know the value for a primary key within the record. Each record
must then contain at least one primary key. Thus, at least one <attribute> element of the parent <schema>
must have its isPrimaryKey attribute set to “true”. This requirement follows because the records of each
table are indexed according to the primary key values (so that they can be retrieved as such). There may be
multiple primary keys within a record; we require that there is at least one. The final attribute,
defaultValue, is the default value of the field. The record field will take on this value if not explicitly
specified in the table records. Although it is impossible to enforce this condition with a DTD, the only
required attribute of a <record> entry is the primary key; this value must be present or XAL will throw an
exception. All other attributes are optional. Consequently, if a <record> attribute (field) is omitted, then
its value is given by the value of defaultValue described in the <schema> definition.

Referring back to Excerpt 7, we see that the table with name “species” has a schema specifying
three fields for each record of the table, name, charge, and mass. The name field is of Java type String,
while the charge and mass are both of Java type Double. The name field is the primary key of the table and,
thus, the table records must be retrieved with the value of this field. After the <schema> entry in the table,
we find the actual records of the table. In this case of Excerpt 7 there are three records, one named
“ELECTRON” representing an electron, one named “PROTON” representing a proton, and the last named
“HMINUS” representing an H− ion. The mass of each particle is in electron-Volts (i.e., the rest energy of
the particle) while the charge is normalized to the unit charge e ≈ 1.602×10−19. Since the data stored in
table groups is user data, he or she may use any units or table formatting that seems appropriate, so long as
it conforms to the schema of a table group.

4.2 The Model Parameters <tablegroup> Entry
There is, at present, one table group that is particular to XAL, that is, it must take a particular

format. This special table group is that containing the modeling parameters for a beam under simulation by
the XAL online model [2]. An example of this table group is shown in Appendix D, it is that for the SNS
machine at Oak Ridge, Tennessee. Note that there are five separate tables in this table group, they have the
names “species”, “beam”, “adaptivetracker”, “twiss”, and “location”. Although the table group of
Appendix D is an example, all model parameter table groups must follow the same schema exactly, only
the data within the table records may differ. That is, Appendix D is essentially a template for all model
parameter table groups.

4.2.1 The Species Table
Excerpt 8 lists the schema of the XAL model-parameters table group. Basically, it is Appendix D

without the <record> element entries. As mentioned above, there are five tables. The first of these,
“species”, is the same as that discussed in the preceding section. The table describes all the particle
species composing the beam within the accelerator. Each species is given a name, that is, the value of the
name attribute, for which it can be referenced in the following tables. The name field is the primary key of
the table and, thus, the table records must be retrieved with the value of this field. The value of the mass
attribute is actually the rest energy Er of the particle where Er = m/c2 (m being particle mass). Thus, this
value should be in electron-Volts. The charge attribute is the particle charge normalized to the unit charge
e ≈ 1.602×10−19. At present, the “species” table records are referenced only within one other table, the
“location” table.

4.2.2 The Beam Table
The next table, called “beam”, describes the collective properties of the particle beam being

modeled. Each record within the table has three fields, name, I, and Q. The name attribute is the primary
key and, consequently, the mechanism by which the table records are reference in the other tables. The
value of the name field is user defined; it should be a unique identifier string which makes sense in the
simulation context. The I and Q fields are the beam current (in Amperes) and beam charge (in Coulombs),
respectively. In an RF cavity these fields are related by the formula

(10) fQI = ,

Unclassified LA-UR-06-5303

 27

where f is the frequency (in Hertz) of the RF power. Thus, for each separate beam, one must prescribe a
name (identifier) then the bunch charge and beam current. Currently, there is only one beam record used, it
specifies the beam throughout the entire machine.

4.2.3 The Adaptive Tracker Table
The third table, named “adaptivetracker”, contains numerical tuning parameters for the space

charge algorithm used in the RMS envelope simulation. The XAL online model uses an adaptive
integration procedure for the simulation. Consequently, there are several numerical parameters that can be
used to fine tune this integration process. Records in this table contain the data fields name, errortol,
initstep, maxstep, slack, maxiter, norm, and order. Below we list each parameter with a description of
its function. For each parameter, we also offer default values which appear to provide reasonable
performance in most cases.

<tablegroup>
 <table name="species">
 <schema>
 <attribute isPrimaryKey="true" name="name" type="java.lang.String"/>
 <attribute isPrimaryKey="false" name="mass" type="java.lang.Double"/>
 <attribute isPrimaryKey="false" name="charge" type="java.lang.Double"/>
 </schema>
 </table>

 <table name="beam">
 <schema>
 <attribute isPrimaryKey="true" name="name" type="java.lang.String"/>
 <attribute isPrimaryKey="false" name="I" type="java.lang.Double"/>
 <attribute isPrimaryKey="false" name="Q" type="java.lang.Double"/>
 </schema>
 </table>

 <table name="adaptivetracker">
 <schema>
 <attribute isPrimaryKey="true" name="name" type="java.lang.String"/>
 <attribute isPrimaryKey="false" name="errortol" type="java.lang.Double" defaultValue="1.0E-3"/>
 <attribute isPrimaryKey="false" name="initstep" type="java.lang.Double" defaultValue="0.01"/>
 <attribute isPrimaryKey="false" name="maxstep" type="java.lang.Double" defaultValue="0.0"/>
 <attribute isPrimaryKey="false" name="norm" type="java.lang.Integer" defaultValue="0"/>
 <attribute isPrimaryKey="false" name="order" type="java.lang.Integer" defaultValue="2"/>
 <attribute isPrimaryKey="false" name="slack" type="java.lang.Double" defaultValue="0.05"/>
 <attribute isPrimaryKey="false" name="maxiter" type="java.lang.Integer" defaultValue="100"/>
 </schema>
 </table>

 <table name="twiss">
 <schema>
 <attribute isPrimaryKey="true" name="name" type="java.lang.String"/>
 <attribute isPrimaryKey="true" name="coordinate" type="java.lang.String"/>
 <attribute isPrimaryKey="false" name="alpha" type="java.lang.Double"/>
 <attribute isPrimaryKey="false" name="beta" type="java.lang.Double"/>
 <attribute isPrimaryKey="false" name="emittance" type="java.lang.Double"/>
 </schema>
 </table>

 <table name="location">
 <schema>
 <attribute isPrimaryKey="true" name="name" type="java.lang.String"/>
 <attribute isPrimaryKey="false" name="species" type="java.lang.String"/>
 <attribute isPrimaryKey="false" name="W" type="java.lang.Double"/>
 <attribute isPrimaryKey="false" name="elem" type="java.lang.String" defaultValue=""/>
 <attribute isPrimaryKey="false" name="s" type="java.lang.Double" defaultValue="0"/>
 <attribute isPrimaryKey="false" name="t" type="java.lang.Double" defaultValue="0"/>
 </schema>
 </table>
</tablegroup

Excerpt 8: model parameters table group schema

Unclassified LA-UR-06-5303

 28

o name: This is the unique identifier of the data record, and the primary key. One should set this attribute
value to the <sequence> name of the beamline where the data record applies. That is, the tuning
parameter values in the current record will be used for simulation in the given beamline described by
the sequence id.

o errortol: The integration algorithm is designed to maintain a specific accuracy in the computed
solution. Moreover, it is designed to keep the integration step size h as large as possible such that ||σsim
− σsoln|| ≤ errortol at each step, where σsim is the simulated moment matrix, σsoln is the “exact”
moment matrix, and ||⋅|| is a suitable matrix norm (see norm below). This technique provides the fastest
solution time while maintaining the given error tolerance. A reasonable default value of errortol is
10−5.

o initstep: The initial step size (in meters) used to start the adaptive integration algorithm. The
integration algorithm continually adjusts the actually step size h to maintain the error tolerance
specified by the parameter errortol. Choosing an initial step too small will marginally slow the
solution time, while choosing a value too large will not significantly affect the solution time. A
reasonable default value of initstep is 0.01 (1 cm).

o maxstep: Maximum allowable step size (in meters). For whatever reason, it is possible for the user to
specify a maximum step size for the adaptive stepping algorithm. This value will prevent the algorithm
from taking any step sizes h greater than maxstep. To turn off this feature set maxstep = “0”. Under
normal conditions this feature is not used, that is, the default value of maxstep is 0 (no maximum step
size).

o slack: Slack tolerance parameter. For each integration step in the simulation, a new value of the step
size h’ is computed for the next step. If h’ is smaller than the previous step h, the current integration
step must be rolled back and the solution recomputed with new step size h’ in order to maintain the
solution tolerance errortol. However, if h’ is only marginally smaller than h (perhaps due to noise or
rounding errors), this backtracking can be a significant waste of CPU time. Thus, we only change the
integration step size if |h’−h|/h > slack. (The reason for the absolute value is that we also must re-
compute the element sub-transfer matrix exp(hA) if h is changed in either direction.) Thus, slack
provides some backlash before the adaptive stepping is triggered. Consequently, slack can save
significant CPU time, however, choosing a value to large will compromise the accuracy of the solution
and the solution tolerance errortol. A reasonable default value of slack is 5% (slack=”0.05”).

o maxiter: Maximum number if integration steps allowed through a beamline element. Because of the
adaptive stepping procedure, it is possible that the algorithm may stall, choosing smaller and smaller
step sizes h. This is a pathological situation that may occur, for example, if the errortol parameter is
set too small. To prevent the simulation from entering this situation, the maxiter parameter specifies
the maximum number if integration steps the algorithm will allow through any beamline element
before stopping and throwing an exception. A reasonable value for maxiter is 100.

o norm: The matrix norm used in the adaptive stepping algorithm. There are three possible values for
norm, which are the three most common Lesbeque norms: “0” indicates the l∞ norm where the matrix
norm is taken as the largest matrix element, “1” indicates the l1 norm where the norm is the summation
of the absolute value of all the matrix elements, and “2” indicates the l2 norm where the norm is the
square-root of the sum of matrix element squares. Any of the three norms work equivalently, the most
popular seems to be the l∞ norm (i.e., norm=”0”).

o order: The order of integration. The integration algorithm will support either a first-order integration
scheme (i.e., Euler integration) or a second-order method. The integration order is specified with an
order value of 1 or 2, respectively. We do not gain much by integrating to higher orders, due to the
way space charge effects are handled. It appears best to use the second-order integration scheme as a
default, that is, order=”2”.

4.2.4 The Twiss Table
The next table in the model-parameters table group is called “twiss”. This table contains the

Twiss, or Courant-Snyder, parameters of the beam at various locations along the beamline. The fields of

Unclassified LA-UR-06-5303

 29

each record are name, coordinate, alpha, beta, and emittance. Clearly, the alpha, beta, and emittance
fields are the Courant-Snyder parameters for the beam ellipse in a single phase plane. The units for beta
are meters/radian while alpha is unitless. The emittance field expects the RMS emittance for the beam in
units of meter-radians (even for longitudinal emittances). The name field is similar to that of the previous
table. Its value is the identifier string for the record and, once again, we set the value of this field to the
name of the <sequence> describing the machine sector where this set of Courant-Snyder applies. However,
unlike the previous table, this value need not be unique. In fact, there should be three records having the
same value for the name field (see below). The coordinate field specifies the phase plane to which the
Courant-Snyder parameters belong. For the model parameters table group to work properly, one must set
the value of this field to either “x”, “y”, or “z”, specifying the x, y, and z phase planes, respectively.

It is important to note here that the “twiss” table has two primary key fields. Specifically, name
and coordinate are both primary keys. Thus, each record is indexed according to the value of both the
name and coordinate fields. To expand on this condition, the name attribute specifies the <sequence>
where the Courant-Snyder parameters apply, specifically, the entrance to that <sequence>. The
coordinate field then specifies the phase plane for the particular Courant-Snyder parameters. Thus, for
each <sequence> where one wishes to begin a simulation, there must be three records whose name field has
the value of the <sequence> identifier, each of these records specifying the Courant-Snyder parameters for
a separate phase plane (x, y, or z). In this manner each record can be uniquely identified by the values of
the two primary keys.

4.2.5 The Location Table
The last table is the “location” table. This table correlates all of the preceding tables. It tells

XAL which beam to use at each <sequence> location within the beamline. Currently, the table is
somewhat incomplete, in that it truly only specifies which particle species to use (i.e., records from the
“species” table), along with several other parameters. In the future it may be necessary to include records
from the “beam” table as well.

There are six fields in each record of the “location” table, name, species, W, elem, s, and t. Once
again, the name field specifies the <sequence> to which the record applies, that is, the value of the name
field is the <sequence> identifier string. Since there is only one primary key, this value must be unique
within the table. The species field indicates which particle species, from the “species” table, to use with
the <sequence>. Thus, the value of the species field is the unique identifier string of the desired species
record in the “species” table. The W field specifies the beam kinetic energy at the entrance to the
<sequence> in electron-Volts. The elem field, if included, indicates that the simulation should begin at that
particular element within the sequence, rather than the sequence entrance. Thus, the value of the elem field
should be the unique identifier string of the <node> entry where the simulation is to begin. The s field
specifies the starting value of the path length parameter at the sequence entrance. It has a default value of
zero, which typically need not be changed for most all simulations. The final field, t, specifies the starting
time of the simulation. Once again this field has a default value of zero which is fine for typical simulation
requirements.

5 Particle Beam Representation: Probe Files
As indicated in the introduction, there is one additional data file supported by XAL, the probe file.

Although its practical use has been lessened by the model-parameters table group discussed in Section 4.2,
the probe file continues to be supported. This file is an XML file used only by the XAL online model, it is
typically small. It describes the particle beam, or rather aspects thereof, to be simulated. The XAL online
model supports several different types of beam simulation, for example, single-particle, RMS envelope, and
transfer map generation. Each of these different types of simulation requires differing data describing the
particular aspects of the beam we are modeling. Thus, there is no rigid format for the probe file and,
consequently, no DTD specification. There is a general format where the particulars depend upon the type
of simulation desired by the user. We cover this general format below.

Because the probe file is currently being deprecated by the model-parameters file, our presentation
is more laconic then for the previous files. However, it is important to cover the basic probe file format
because the model-parameters table group, in its current form, is formatted primarily to support single-

Unclassified LA-UR-06-5303

 30

particle simulation and RMS envelope simulation. Thus, at least at present, it may even be necessary to use
a probe file for a different simulation type.

To understand the basic structure of a probe file it is helpful to appreciate the basic architecture of
the XAL online model (for a more detailed exposition see [1] and [2]). The online model is built upon the
Element/Algorithm/Probe design pattern conceived by Malitsky and Talman [18]. In this framework, the
particle beam simulator is composed of three separate software components, 1) the Element representing
the machine hardware, 2) the Algorithm encapsulating the numerical simulation technique, and 3) the
Probe which represents some aspect or aspects of the beam under study. In this manner, the same machine
representation can support multiple simulation strategies. This fact alone is a tremendous savings in
development effort, since such a large part of the simulation is devoted toward proper representation of the
machine hardware. The Element, or machine description, is taken from the optics file which has already
occupied most of this presentation. The Algorithm and Probe are identified by the probe file. Specifically,
the probe file tells the XAL online model which type of beam simulation to perform and which algorithm
to use during the simulation.

5.1 The <probe> Element
After the initial perfunctory XML entries,

a probe file begins with the singleton <probe>
element. This is the root of the probe file. This
situation is shown in the example probe file of
Excerpt 9. There are four possible attributes for a
<probe> element, type, id, time, and author;
only the type attribute is required. These
attributes are listed in Table 21. The type
attribute is the Java class type (full package name)
of the probe object. This attribute is required so that XAL knows to instantiate the correct probe type.
Referring to Excerpt 9 we see that the value there is “gov.sns.xal.model.probe.EnvelopeProbe”, which
is the class type representing the RMS envelopes of a particle beam. The id attribute is the identifier string
of the probe instance within XAL. This identifier does not need to be unique; it is simply a convenience for
the user in order to refer to a specific probe object. The time attribute is a time stamp for the probe file, to
maintain versioning if desired. The author attribute facilitates a reference to the file’s author for
documentation purposes.

There are three child elements of the root <probe> element, all singletons. First, there is an
optional <comment> element which allows users to include any additional information concerning the
contents of the file. The next entry is the <algorithm> element, which describes the simulation algorithm
used to propagate the probe down the beamline. The architecture of XAL allows different simulation
algorithms to be used with the same beam probe (not simultaneously). The last entry is the <state>

<?xml version = '1.0' encoding = 'UTF-8'?>
<probe time="Feb 9, 2004 2:42:00 PM" type="gov.sns.xal.model.probe.EnvelopeProbe">
 <comment text="XAL model probe representing rms envelope state at HEBT entrance"/>
 <algorithm type="EnvTrackerAdapt" ver="1">
 <tracker debug="false" update="1"/>
 <adapt errortol="1.0E-5" initstep="0.031278684521382855"
 maxstep="0.0" norm="0" order="2" slack="0.05" maxiter="50"/>
 </algorithm>
 <state id="" type="gov.sns.xal.model.probe.traj.EnvelopeProbeState">
 <location W="2500000.0" elem="" s="0.0"/>
 <species Er="9.393014E8" q="-1."/>
 <beam I="0.020" Q="4.96894E-11"/>
 <envelope
 alphaX="-1.962" betaX="0.183" emitX="2.73e-6"
 alphaY="1.768" betaY="0.161" emitY="2.73e-6"
 alphaZ="0.0196" betaZ="0.5844" emitZ="3.8638e-6"/>
 </state>
</probe>

Excerpt 9: example envelope probe file

Attribute Description
type Java class type of probe object
id Identifier string of probe object
time Time stamp of probe file

author Author of probe file
Table 21: <probe> element attributes

Unclassified LA-UR-06-5303

 31

element which describes the internal state variables of the beam probe. Every beam probe maintains a set
of state variables describing the aspect of the beam it represents, for example, the moments of the beam up
to second order in the case of the RMS envelope probe. The probe requires the initial value of these state
variables to begin the simulation. We cover each child element of <probe> below.

5.2 File Comments: The <comment> Element
We can annotate the probe file with additional user data using the <comment> element. These

comments will then also be available programmatically and at run time within the XAL environment. As
seen in Excerpt 9 the text of the comment is included as the value of the text attribute. In that case the
probe file is declared to be the initial state of an RMS envelope probe at the entrance to a HEBT section.
There are two more supported attributes for a <comment> entry which are not shown in the excerpt, author
and date. The author attribute allows one to identify the author of the comment; the date attribute is a
date stamp for the comment.

5.3 Specifying the Simulation Algorithm: The <algorithm> Element
Every beam probe needs an algorithm; this is an object which knows how to propagate the probe

down the beamline. Algorithm classes are built for specific probe classes, but probe classes are
independent of algorithm classes. Thus, it is possible for a single probe class to be associated with many
different algorithm classes, but each algorithm understands only one probe. (Currently, most probes have
only one type of algorithm associated with them.) The <algorithm> element specifies the algorithm class
to be used with the probe instance, and any numerical parameters needed by the algorithm.

The <algorithm> element has two attributes, type and ver. The type attribute is required and
specifies the algorithm class to use for the simulation. Unfortunately, its value is not the actual Java class
type of the algorithm object (most times it is so, however). The value of this attribute is actually the Java
string returned by the getType() method of the algorithm class. (All algorithm classes are derived from
the base class gov.sns.xal.model.alg.Tracker, so existence of this method is guaranteed.) Typically,
the string returned by this method is the class name of the algorithm without the package prefix. For
example, in Excerpt 9 the value of type is “EnvTrackerAdapt”; the Java class type of the algorithm is
actually gov.sns.xal.model.alg.EnvTrackerAdapt. Unfortunately, in the necessity of absolute certainty
it is best to check the source code for this value. The ver attribute is optional and contains a version stamp
for the algorithm. This attribute is available to maintain backward compatibility in case any major changes
are made to existing algorithm classes.

The <algorithm> element has at least one child element, <tracker>. Other elements pertaining to
the particular algorithm class will likely be present. For example, the <algorithm> entry in Excerpt 9
contains the child <adapt> which specifies numerical parameters for the adaptive space charge algorithm.
We discuss the <tracker> element, then the <adapt> element of the RMS envelope probe since it is the
most common additional element.

5.3.1 The <tracker> Element
In the parenthetical remark above we mentioned

that all algorithm classes in XAL are derived from a
common base class, gov.sns.xal.model.alg.Tracker.
The <tracker> element specifies parameters of this base
class and, thus, parameters common to all algorithm
classes. There are currently only two attributes of this
element, debug and update, which are listed in Table 22.
The debug attribute is a Boolean debugging flag. When
the value is set to “1” the algorithm object will send
debugging information to the console. Under normal
operation this value should be set to “0” indicating that no
debugging information is generated. The update attribute
is more complex, it specifies the manner in which the
probe’s trajectory information is saved throughout the beamline.

Attribute Description

debug Debugging flag (“0” or “1”)
update Trajectory updating scheme

0 Never
1 Always
2 Element exit
4 Element entrance
6 Entrance and exit

Table 22: <tracker> attributes

Unclassified LA-UR-06-5303

 32

To be useful, the probe object must save its past states as it propagates down the beamline. We
call these past states of the probe the probe trajectory, and it is treated as a single object within the XAL
framework. There are several instances where the probe must compute many more states than is necessary
to store. For example, to maintain a given accuracy the probe may need to make many steps through a
beamline element but only the probe states at the exit of each element are needed for a particular
accelerator application. Rather than saving all the intermediate states generated by the probe, which can
lead to a significant waste of computer resources, we can specify what states we wish to keep after
termination of the simulation. This capability is accomplished using the update attribute of the <tracker>
element. Table 22 lists the supported trajectory update schemes of all the algorithm classes in XAL. The
value of the update attribute determines the amount of trajectory information (i.e., the number of probe
states) stored in the trajectory object upon completion of the simulation.

Referring to Table 22 we see that there are five possible values for the update attribute; all are
integer indexes. A value of “0” indicates that the algorithm should never update the trajectory object. This
value would be specified only if a custom probe algorithm was used, one that maintains its own update
scheme, otherwise no simulation information would be generated. A value of “1” requests that the
algorithm store every state generated in the simulation. This situation could potentially create an enormous
trajectory object. However, it may be of value, for example, when using the adaptive space charge
algorithm for the RMS envelope probe. There one may wish to determine where in the beamline the
algorithm is spending the most computation effort and, thus, where the beam is experiencing large dynamic
motion. Setting the value of update to “2” causes the algorithm to save state information only at the exit of
each beamline element. This setting is probably the most common. Setting the value of update to “4”
causes the algorithm to save state information only at the entrance of each beamline element. Since, in the
context of most simulations, the exit of one beamline element is the entrance to the following, the only
difference between value “2” and value “4” is that the trajectory generated by “4” will not contain the final
state of the simulation (the initial states of the simulation is always saved in the trajectory). Finally a value
of “6” indicates that the probe state information is to be saved at both the entrance and the exit of each
beamline element.

5.3.2 The <adapt> Element
The <adapt> element is valid only in the context of an RMS envelope probe when using the

adaptive space charge algorithm. Specifically, when the type attribute of the <probe> element is set to
“gov.sns.xal.model.probe.EnvelopeProbe” and when the type attribute of the <algorithm> child
element is set to “EnvTrackerAdapt”. (In the case of the RMS envelope probe there exists other available
algorithms. The adaptive space charge algorithm is the most general, thus, the most practical and most
widely used.) Since the RMS envelope probe is widely used for simulation, we briefly cover the <adapt>
element. The attributes of this element are the fields of the “adaptivetracker” table in the model-
parameter table group covered in Subsection 4.2.3, less the name field. Specifically then, these attributes
are errortol, initstep, maxstep, slack, maxiter, norm, and order. The values of these fields are the
same as those listed in Subsection 4.2.3, consequently, the descriptions there apply.

5.4 Specifying the Initial Probe State: The <state> Element
Beam probe objects maintain their state using a separate probe state objects. The <state>

element describes a probe state at given instance, in the case of a probe file, at the initial position. Probe
states maintain all the information necessary to describe a beam probe’s internal condition at any point
along the beamline. Of course this information differs depending upon the type of probe being simulated;
therefore, the structure of a <state> entry is not uniform. However, all probe state objects are derived
from a common base class gov.sns.xal.model.probe.traj.ProbeState. Accordingly, there are common
data to each probe state and, thus, common child elements of each <state> element. We cover these
common elements and the <envelope> element particular to the RMS envelope probe. First we describe
the attributes of the <state> element.

There are two attributes of the <state> element, type and id. The type attribute contains the Java
class type of the probe state object. We see in the case of Excerpt 9, this class is
gov.sns.xal.model.probe.traj.EnvelopeProbeState, indicating the probe-state Java class for the RMS
envelope probe (Java type gov.sns.xal.model.probe.EnvelopeProbe). The id attribute is optional, it

Unclassified LA-UR-06-5303

 33

provides an identifier for the initial probe state which may be accessed programmatically, or during run
time. In Excerpt 9 we see this value is left as null (i.e., id=””).

5.4.1 Setting the Initial Energy, Time, and Position: The <location> Element
Each <state> element contains a <location> child element. The attributes of this element

contain data in the base class gov.sns.xal.model.probe.traj.ProbeState common to all probe state
objects. There are four possible attributes here, W, s, t, and elem. The W attribute is required; it contains the
initial kinetic energy of the beam in electron-Volts. The other three attributes are all optional, having
default values if not specified. The s attribute is the initial path length parameter. Typically this value is
zero, which is its default value. There is no real significance to this value; it does not change the starting
location of the simulation. It just offers the user the capability of initiating the path length parameter to a
nonzero value. The t attribute is the initial time of the simulation. Once again, the actual value is not
significant as far as the simulation is concerned; it is simply an arbitrary starting time. The default value
for t is zero (i.e., t=”0.0”). The last attribute, elem, does have an effect on the simulation. The value of
this attribute is the unique <node> identifier where the simulation is to begin, that is., the id attribute of the
<node> element. Setting the elem attribute to a valid node identifier causes the simulation to skip to that
<node> within the sequence where it belongs. The default value of elem is null (elem=””), in which case
the simulation begins at the entrance of the <sequence> element where it is started.

5.4.2 Specifying the Particle Charge and Mass: The <species> Element
Also part of the base ProbeState is the charge and rest energy of the beam particle. These values

are specified using the <species> element. There are two attributes of this element, q and Er. The
attribute q is the charge of the beam particle in units of the unit charge e ≈ 1.602×10−19. The Er attribute is
the rest energy of the beam particle in units of electron volts. Since the rest energy Er of a particle is
proportional to is mass m by a factor c2 (Er = mc2), this is equivalent to specifying that beam particle’s mass.
For example, in the case of a proton, the rest energy would be specified by setting Er=”9.38e8”.

5.4.3 Specifying the Beam Current and Bunch Charge: The <beam> Element
For simulations that involve the notion of a beam, for example an RMS envelope simulation, the

corresponding probe states are derived from a child class of ProbeState called
gov.sns.xal.model.probe.traj.BeamState. The later class adds parameters to the probe state which
have context in these situations, namely the notions of beam current and bunch charge. (For a counter
example, consider the case of single-particle simulation where there is no “beam” per se.) To represent
these parameters the <beam> element is included under the <state> parent. This element has two attributes
I and Q, representing the beam current and bunch charge, respectiviely. The value of the I attribute is in
units of Amperes, whereas the Q attribute has units of Coulombs. Recall that for bunched beams in an RF
system with frequency f, these parameters are related by Eq. (10).

5.4.4 Specifying the Initial RMS Beam Ellipse: The <envelope> Element
In the special case of an RMS envelope simulation, the <envelope> element should be present as a

child of the <state> element. This situation is depicted in Excerpt 9. The <envelope> element specifies
the Courant-Snyder, or Twiss, parameters of the initial RMS beam ellipse. The attributes of <envelope>
are the α and β Courant-Snyder parameters, along with the RMS emittances for each phase plane of the
beam. Thus, to specify all these parameters we need a total of six attributes, three for each phase plane.
Referring to Excerpt 9, we see that there are attributes alphaX, alphaY, and alphaZ which are the initial α
parameters for the beam ellipses in the x, y, z planes respectively. The values of these attributes are unit-
less. The betaX, betaY, and betaZ attributes specify the initial Courant-Snyder β parameters for the x, y, z
phase planes respectively. The units there are in radians/meter. Finally, the attributes emitX, emitY, and
emitZ are the initial RMS emittances of the beam in the x, y, and z phase planes, respectively. The units for
all emittance parameters, including that of the longitudinal plane z, are radian-meters.

6 Conclusion
We have covered much of what is necessary to configure an XAL installation to a particular

accelerator complex. There are four primary XML files to be populated. The main.xal file is the first

Unclassified LA-UR-06-5303

 34

place XAL looks to configure itself. This file contains the types and locations of all the remaining
configuration files. The most important, and typically the largest, is the optics file, tagged
<optics_source> in main.xal. It describes all the machine hardware in the beamline relevant to XAL
operation. The next file is the timing file, tagged <timing_source> in main.xal. This file is typically a
small file listing the channels of general timing signals within the accelerator complex. XAL can be used
without this file, although many of the existing applications that ship with XAL use these signals. The last
file is the model-parameters file. This file is a special instance of the more general table-group mechanism
used by XAL to import user data. All such table groups are tagged with the <tablegroup_source> entry
within the main.xal file. We have discussed the general outline of a table group and how it is used to
include data particular to an accelerator site, and how it may be accessed within XAL. The model-
parameters table group must have the name attribute of its corresponding <tablegroup_source> entry set to
“modelparams” for XAL to recognize it as such. The model-parameters table group must be included in
order to use the simulation capabilities of XAL, that is, to use the XAL online model.

Since XAL is under continual development (and essentially a collaborative effort), this document
is necessarily dated. As the software system is improved and updated, there are bound to be changes in the
specifics described here. Fortunately, XAL is based upon a solid architectural foundation so that any
fundamental changes in the XAL implementation will likely to be minimal. Thus, although some details
may be altered in the future, the basic structure described here is unlikely to incur any major changes. It is
also hoped that this will be a living document, one that will evolve as XAL does. By keeping this
document in the public domain, developers can record their improvements and additions so that these
features are accessible to all.

Unclassified LA-UR-06-5303

 35

References
[1] C.K. Allen, C.A. McChesney, C.P. Chu, J.D. Galambos, W.-D. Klotz, T.A. Pelaia, A. Shislo, “A

Novel Online Simulator for Applications Requiring a Model Reference”, ICALEPCS 2003 Conference
Proceedings, Kyongju, Korea, October 13-17, 2003.

[2] C.K. Allen, C.A. McChesney, N.D. Pattengale, C.P. Chu, J.D. Galambos, W.-D. Klotz, T.A. Pelaia, A.
Shislo, “A Modular On-Line Simulator for Model Reference Control of Charged Particle Beams”,
PAC 2003 Conference Proceedings, Portland, OR, May 12-16, 2003.

[3] J. H. Billen and L. M. Young, "POISSON/SUPERFISH on PC Compatibles," Proceedings of the 1993
Particle Accelerator Conference, Vol. 2 of 5, 790-792 (1993).

[4] G. Booch, J. Rumbaugh and Ivar Jacobson, The Unified Modeling Language User Guide (Addison-
Wesley, Reading, Massachusetts, 1999).

[5] D.C. Carey, The Optics of Charged Particle Beams (Harwood Academic Publishers, London, 1987).

[6] C.M. Chu, J.D. Galambos, W.-D. Klotz, T.A. Pelaia, A. Shislo, C.K. Allen, C.A. McChesney, N.D.
Pattengale, “Applications Programming Structure and Physics Applications”, PAC 2003 Conference
Proceedings, Portland, OR, May 12-16.

[7] C.M. Chu, J. Galambos, J. Wei, C.K. Allen and P. McGehee, “SNS Applications Programming Plan”,
ICALEPCS 2001 Conf. Proceed., San Jose, CA, Nov 27-30, 2001.

[8] http://control.cosylab.com

[9] http://java.sun.com/j2se/1.5.0/docs/api

[10] http://www.jython.org/Project/index.html

[11] http://www.mathworks.com/

[12] http://www.w3.org/TR/1998/NOTE-datetime-19980827

[13] J. D. Galambos, C.P. Chu, S.M. Cousineau, T.A. Pelaia, A.P. Shishlo, C.K. Allen, “XAL Application
Programming Structure”, PAC05 Conference Proceedings, Oak Ridge, Tennessee , May 16-20, 2005,
pp. 79-83.

[14] J. Galambos, C.M. Chu, T.A. Pelaia, A. Shishlo, C.K. Allen and N. Pattengale, "SNS Applications
Programming Environment", EPAC 2002 Conference Proceedings, Paris, June, 2002.

[15] E.R. Harold and W.S. Means, XML in a Nutshell (O’Reilly, Sebastopol, CA, 2001).

[16] P. Lapostolle and M. Weiss, “Formulae and Procedures Useful for the Design of Linear Accelerators”,
CERN-PS-2000-001.

[17] S.Y. Lee, Accelerator Physics (World Scientific, Singapore, 1999).

[18] N. Malitsky and R. Talman, “The Framework of Unified Accelerator Libraries”, ICAP 1998.

[19] T.L. Owens, M.B. Popovic, E.S. McCrory, C.W. Schmidt, and L.J. Allen, “Phase Scan Signature
Matching for Linac Tuning”, Part. Accel. Vol. 48, pp. 169-179 (1994).

[20] W.K.H. Panofsky and M. Phillips, Classical Electricity and Magnetism (Addison-Wesley, Reading,
MA, 1962).

[21] M. Reiser, Theory and Design of Charged Particle Beams (Wiley, New York, 1994).

[22] D.H. Sattinger and O.L. Weaver, Lie Groups and Algebras with Applications to Physics, Geometry,
and Mechanics (Springer-Verlang, New York, 1986).

[23] H. Wiedemann, Particle Accelerator Physics I (Springer-Verlag, Berlin, 1993).

[24] T.P. Wangler, RF Linear Accelerators (Wiley, New York, 1998), Chapt. 2, 6.

Unclassified LA-UR-06-5303

 36

Appendix A: Listing of xdxf.dtd

<?xml version="1.0" encoding="US-ASCII" ?>

<!-- EXTENDED DESCRIPTION EXCHANGE FORMAT (XDXF)
 - Document Type Definition
 -
 - Version : 1.2.0
 - Author : Christopher K. Allen, Paul C. Chu
 - Modified : June, 2002
 -
 -->

<!-- ### -->
<!-- XDXF Edit Context -->

<!ELEMENT sources (optics_source, optics_extra*, timing_source, tablegroup_source*) >

<!ELEMENT optics_source EMPTY >
<!ATTLIST optics_source name NMTOKEN #REQUIRED >
<!ATTLIST optics_source url NMTOKEN #REQUIRED >

<!ELEMENT timing_source EMPTY >
<!ATTLIST timing_source name NMTOKEN #REQUIRED >
<!ATTLIST timing_source url NMTOKEN #REQUIRED >

<!ELEMENT optics_extra EMPTY >
<!ATTLIST optics_extra name NMTOKEN #REQUIRED >
<!ATTLIST optics_extra url NMTOKEN #REQUIRED >

<!ELEMENT tablegroup_source EMPTY >
<!ATTLIST tablegroup_source name NMTOKEN #IMPLIED >
<!ATTLIST tablegroup_source url NMTOKEN #IMPLIED >

<!ELEMENT table (schema, record+) >
<!ATTLIST table name NMTOKEN #REQUIRED >
<!ATTLIST table recordClass NMTOKEN #IMPLIED >

<!ELEMENT schema (attribute+) >

<!ELEMENT tablegroup (table+) >

<!ELEMENT attribute EMPTY >
<!ATTLIST attribute isPrimaryKey NMTOKEN #IMPLIED >
<!ATTLIST attribute name NMTOKEN #REQUIRED >
<!ATTLIST attribute type NMTOKEN #REQUIRED >

<!ELEMENT record EMPTY >
<!ATTLIST record alphaX NMTOKEN #IMPLIED >
<!ATTLIST record alphaY NMTOKEN #IMPLIED >
<!ATTLIST record alphaZ NMTOKEN #IMPLIED >
<!ATTLIST record beamCharge NMTOKEN #IMPLIED >
<!ATTLIST record beamCurrent NMTOKEN #IMPLIED >
<!ATTLIST record betaX NMTOKEN #IMPLIED >
<!ATTLIST record betaY NMTOKEN #IMPLIED >
<!ATTLIST record betaZ NMTOKEN #IMPLIED >
<!ATTLIST record eX NMTOKEN #IMPLIED >
<!ATTLIST record eY NMTOKEN #IMPLIED >
<!ATTLIST record eZ NMTOKEN #IMPLIED >
<!ATTLIST record envelopeID NMTOKEN #IMPLIED >
<!ATTLIST record particleCharge NMTOKEN #IMPLIED >
<!ATTLIST record particleID NMTOKEN #IMPLIED >
<!ATTLIST record particleKineticEnergy CDATA #IMPLIED >
<!ATTLIST record particleRestEnergy CDATA #IMPLIED >
<!ATTLIST record position NMTOKEN #IMPLIED >
<!ATTLIST record x NMTOKEN #IMPLIED >
<!ATTLIST record xp NMTOKEN #IMPLIED >

Unclassified LA-UR-06-5303

 37

<!ATTLIST record y NMTOKEN #IMPLIED >
<!ATTLIST record yp NMTOKEN #IMPLIED >
<!ATTLIST record z NMTOKEN #IMPLIED >
<!ATTLIST record zp NMTOKEN #IMPLIED >

<!-- ### -->
<!-- XDXF Attribute Library -->

<!ELEMENT attributes (align | magnet | rfgap)* >

<!ELEMENT align EMPTY >
<!ATTLIST align pitch NMTOKEN #IMPLIED >
<!ATTLIST align roll NMTOKEN #IMPLIED >
<!ATTLIST align x NMTOKEN #IMPLIED >
<!ATTLIST align y NMTOKEN #IMPLIED >
<!ATTLIST align yaw NMTOKEN #IMPLIED >
<!ATTLIST align z NMTOKEN #IMPLIED >

<!ELEMENT aperture EMPTY>
<!ATTLIST aperture shape CDATA #IMPLIED >
<!ATTLIST aperture x NMTOKEN #IMPLIED >
<!ATTLIST aperture y NMTOKEN #IMPLIED >

<!ELEMENT displacement EMPTY>
<!ATTLIST displacement x NMTOKEN #IMPLIED >
<!ATTLIST displacement y NMTOKEN #IMPLIED >
<!ATTLIST displacement z NMTOKEN #IMPLIED >

<!ELEMENT magnet EMPTY >
<!ATTLIST magnet dfltMagFld NMTOKEN #IMPLIED >
<!ATTLIST magnet len NMTOKEN #REQUIRED >
<!ATTLIST magnet polarity NMTOKEN #IMPLIED >

<!ELEMENT rfgap EMPTY >
<!ATTLIST rfgap TTF NMTOKEN #REQUIRED >
<!ATTLIST rfgap ampFactor NMTOKEN #IMPLIED >
<!ATTLIST rfgap amp NMTOKEN #IMPLIED >
<!ATTLIST rfgap freq NMTOKEN #IMPLIED >
<!ATTLIST rfgap length NMTOKEN #REQUIRED >
<!ATTLIST rfgap phaseFactor NMTOKEN #IMPLIED >

Unclassified LA-UR-06-5303

 38

<!ATTLIST channel signal NMTOKEN #REQUIRED >

<!ELEMENT channelsuite (channel*) >
<!ATTLIST channelsuite name NMTOKEN #IMPLIED >

<!-- ### -->
<!-- Timing Signals -->

<!ELEMENT timing (channelsuite) >

<!-- ### -->
<!-- XDXF Data Structure -->

<!ELEMENT xdxf (sequence+) >
<!ATTLIST xdxf date CDATA #REQUIRED >
<!ATTLIST xdxf system NMTOKEN #REQUIRED >
<!ATTLIST xdxf ver NMTOKEN #REQUIRED >

<!ELEMENT comment (#PCDATA)>
<!ATTLIST comment author CDATA #IMPLIED >
<!ATTLIST comment date CDATA #IMPLIED >

<!ELEMENT sequence (channelsuite | node+ | sequence)* >
<!ATTLIST sequence id NMTOKEN #REQUIRED >
<!ATTLIST sequence len NMTOKEN #IMPLIED >
<!ATTLIST sequence pos NMTOKEN #IMPLIED >
<!ATTLIST sequence type NMTOKEN #IMPLIED >

<!ELEMENT node (attributes, channelsuite?) >
<!ATTLIST node id ID #REQUIRED >
<!ATTLIST node len NMTOKEN #IMPLIED >
<!ATTLIST node pos NMTOKEN #REQUIRED >
<!ATTLIST node type (BCM | Bnch | BPM | DCH | DCV | QH | QV | PMQH | PMQV | RG | WS)
#REQUIRED >

Unclassified LA-UR-06-5303

 39

Appendix B: XAL Channel Handles
Although the situation may be somewhat volatile, we list the channel handles for many of the

hardware object in the smf package. Note that the safest procedure for determining these values is to
consult the source code. However, it is also worthwhile to consolidate the channel handle values in order
to facilitate the XAL configuration process and provide a central documentation of such.

Class Class Field Channel
Handle

Description

Electromagnet

VDipoleCorr

HDipoleCorr

Bend

Quadrupole

TrimmedQuadrupole

Sextupole

FIELD_RB_HANDLE fieldRB Field strength readback

RfCavity

CCL

DTLTank

ReBuncher

SCLCavity

CAV_AMP_SET_HANDLE

CAV_PHASE_SET_HANDLE

CAV_AMP_AVG_HANDLE

CAV_PHASE_AVG_HANDLE

DELTA_TRF_START_HANDLE

DELTA_TRF_END_HANDLE

T_DELAY_HANDLE

cavAmpSet

cavPhaseSet

cavAmpAvg

cavPhaseAvg

deltaTRFStart

deltaTRFEnd

tDelay

Set cav. amplitude channel

Set cav. phase channel

Cav. amplitude readback

Cav. phase readback

Delta T RF start

Delta T RF end

Time delay

Vacuum

CvgGauge

IonGauge

PRESS_HANDLE P Pressure readback (torr)

BLM

NeutronDetector

LOSS_AVG_HANDLE

T_AVG_LEN_HANDLE

lossAvg

tAvgLen

Averaged current loss

Averaged beam length

BPM X_AVG_HANDLE

Y_AVG_HANDLE

AMP_AVG_HANDLE

PHASE_AVG_HANDLE

X_TBT_HANDLE

Y_TBT_HANDLE

AMP_TBT_HANDLE

PHASE_TBT_HANDLE

T_AVG_LEN_HANDLE

xAvg

yAvg

amplitudeAvg”

phaseAvg

xTBT

yTBT

ampTBT

phaseTBT

tAvgLen

Averaged hor. position

Averaged vert. position

Ave’ed current amplitude

Averaged phase position

Turn-by-turn hor. position

Turn-by-turn vert. position

Turn-by-turn amplitude

Turn-by-turn phase pos.

Turn-by-turn ave’ed length

RingBPM STAGE1_LEN_HANDLE

STAGE1_GAIN_HANDLE

STAGE1_METHOD_HANDLE

STAGE2_LEN_HANDLE

STAGE2_GAIN_HANDLE

STAGE2_METHOD_HANDLE

Stage1Len

Stage1Gain

Stage1Method

Stage2Len

Stage2Gain

Stage2Metod

Stage 1 length

Stage 1 gain (4 settings)

Stage 1 mode (base, or 402.5)

Stage 2 length

Stage 2 gain (4 settings)

Stage 2 mode (base, or 402.5)

Unclassified LA-UR-06-5303

 40

STAGE3_LEN_HANDLE

STAGE3_GAIN_HANDLE

STAGE3_METHOD_HANDLE

STAGE4_LEN_HANDLE

STAGE4_GAIN_HANDLE

STAGE4_METHOD_HANDLE

Stage3Len

Stage3Gain

Stage3Method

Stage4Len

Stage4Gain

Stage4Method

Stage 3 length

Stage 3 gain (4 settings)

Stage 3 mode (base, or 402.5)

Stage 4 length

Stage 4 gain (4 settings)

Stage 4 mode (base, or 402.5)

CurrentMonitor Q_INTEGRAL_HANDLE

T_AVG_LEN_HANDLE

I_TBT_HANDLE

T_DELAY_HANDLE

I_AVG_HANDLE

I_MAX_HANDLE

Particles

DisplayLength

currentTBT

tDelay

currentAvg

currentMax

Macro-pulse charge

Averaged pulse length

Turn-by-turn current

Time delay

Average beam current

Maximum beam current

ProfileMonitor POS_HANDLE

RT_GRAPH_HANDLE

ABORT_SCAN_HANDLE

BEGIN_SCAN_HANDLE

CHANGE_PARAMS_HANDLE

ACCEPT_PARAMS_HANDLE

STAT_ARRAD_HANDLE

VDATA_ARRAD_HANDLE

DDATA_ARRAD_HANDLE

HDATA_ARRAD_HANDLE

POS_ARRAD_HANDLE

STEPS_HANDLE

STEP1_POS_HANDLE

POS_SPACING_HANDLE

NO_MEAS_HANDLE

SCAN_LEN_HANDLE

BIAS_HANDLE

V_AREA_F_HANDLE

V_AMP_F_HANDLE

V_MEAN_F_HANDLE

V_SIGMA_F_HANDLE

V_OFFST_F_HANDLE

V_SLOPE_F_HANDLE

V_AREA_M_HANDLE

V_AMP_M_HANDLE

V_MEAN_M_HANDLE

V_SIGMA_M_HANDLE

V_OFFST_M_HANDLE

Position

RTGraph

abortScan

beginScan

ChangeParams

AcceptParams

statusArray

vDataArray

dDataArray

hDataArray

positionArray

nSteps

Step1Pos

PosSpacing

NoMeas

scanLength

Bias

vAreaF

vAmpF

vMeanF

vSigmaF

vOffstF

vSlopeF

vAreaM

vAmpM

vMeanM

vSigmaM

vOffstM

Real-time position of wire

???

Stop wire scan

Begin wire scan

???

???

Wire scanner status array ?

Vertical data array?

Diagonal data array?

Horizontal data array?

Wire positions array?

Number of scanner steps

Set start position of wire (mm)

Distance between steps?

No. of pulses for each wire pos.

Length of scan (mm)

Wire bias voltage (Volts)

Vertical area fit?

Vertical amplitude fit?

Vertical mean fit?

Vertical sigma fit?

Vertical offset fit?

Vertical slope fit?

Vertical area RMS

Vertical amplitude RMS

Vertical mean RMS

Vertical sigma RMS

Vertical offset RMS

Unclassified LA-UR-06-5303

 41

V_SLOPE_M_HANDLE

D_AREA_F_HANDLE

D_AMP_F_HANDLE

D_MEAN_F_HANDLE

D_SIGMA_F_HANDLE

D_OFFST_F_HANDLE

D_SLOPE_F_HANDLE

D_AREA_M_HANDLE

D_AMP_M_HANDLE

D_MEAN_M_HANDLE

D_SIGMA_M_HANDLE

D_OFFST_M_HANDLE

D_SLOPE_M_HANDLE

H_AREA_F_HANDLE

H_AMP_F_HANDLE

H_MEAN_F_HANDLE

H_SIGMA_F_HANDLE

H_OFFST_F_HANDLE

H_SLOPE_F_HANDLE

H_AREA_M_HANDLE

H_AMP_M_HANDLE

H_MEAN_M_HANDLE

H_SIGMA_M_HANDLE

H_OFFST_M_HANDLE

H_SLOPE_M_HANDLE

V_FIT_HANDLE

D_FIT_HANDLE

H_FIT_HANDLE

V_POS_HANDLE

D_POS_HANDLE

H_POS_HANDLE

V_RAW_HANDLE

D_RAW_HANDLE

H_RAW_HANDLE

V_REAL_DATA_HANDLE

D_REAL_DATA_HANDLE

H_REAL_DATA_HANDLE

vSlopeM

dAreaF

dAmpF

dMeanF

dSigmaF

dOffstF

dSlopeF

dAreaM

dAmpM

dMeanM

dSigmaM

dOffstM

dSlopeM

hAreaF

hAmpF

hMeanF

hSigmaF

hOffstF

hSlopeF

hAreaM

hAmpM

hMeanM

hSigmaM

hOffstM

hSlopeM

vFit

dFit

hFit

vPos

dPos

hPos

vRaw

dRaw

vRaw

vRealData

dRealData

hRealData

Vertical slope RMS

Diagonal area fit?

Diagonal amplitude fit?

Diagonal mean fit?

Diagonal sigma fit?

Diagonal offset fit?

Diagonal slope fit?

Diagonal area RMS

Diagonal amplitude RMS

Diagonal mean RMS

Diagonal sigma RMS

Diagonal offset RMS

Diagonal slope RMS

Horizontal area fit?

Horizontal amplitude fit?

Horizontal mean fit?

Horizontal sigma fit?

Horizontal offset fit?

Horizontal slope fit?

Horizontal area RMS

Horizontal amplitude RMS

Horizontal mean RMS

Horizontal sigma RMS

Horizontal offset RMS

Horizontal slope RMS

Vertical fit array

Diagonal fit array

Horizontal fit array

Vertical positions array (mm)

Diagonal positions array (mm)

Horizontal pos.’s array (mm)

Raw vert. intensity array (AU)

Raw diag. intensity array (AU)

Raw vert. intensity array (AU)

Vertical real data stream

Diagonal real data stream

Horizontal real data stream

MagnetPowerSupply CYCLE_STATE_HANDLE

CURRENT_SET_HANDLE

CURRENT_RB_HANDLE

cycleState

I_Set

I

Invalid 0, cycling 1, valid 2

Set power supply current

PS current readback

Unclassified LA-UR-06-5303

 42

MainMagnetSupply CYCLE_ENABLE_HANDLE

FIELD_SET_HANDLE

FIELD_RB_HANDLE

FIELD_BOOK_HANDLE

cycleEnable

fieldSet

psFieldRB

B_Book

Flag: cycle mag.. when set

Set mag. field strength

Field strength readback

MPS field setpoint

MagnetTrimSupply FIELD_SET_HANDLE

FIELD_RB_HANDLE

TRIM_CURRENT_SET_HANDLE

TRIM_CURRENT_RB_HANDLE

trimSet

trimRB

trimI_Set

trimI

Set mag. field strength

Field strength readback

Set trim PS current

Trim PS current readback

Table 23: XAL channel handle listing

Unclassified LA-UR-06-5303

 43

Appendix C: Listing of tablegroup.dtd
<?xml version="1.0" encoding="US-ASCII" ?>

<!-- TABLE GROUP DOCUMENT TYPE DEFINITION
 -
 - Version : 1.0.0
 - Author : Christopher K. Allen
 - Modified : May, 2006
 -
 -->

<!-- ### -->
<!-- TABLEGROUP DEFINITION -->

 <!ELEMENT tablegroup (table*) >
 <!ATTLIST tablegroup name NMTOKEN #REQUIRED>

 <!ELEMENT table (schema, record*) >
 <!ATTLIST table name NMTOKEN #REQUIRED >
 <!ATTLIST table recordClass CDATA #IMPLIED >

 <!ELEMENT schema (attribute*) >

 <!ELEMENT attribute EMPTY >
 <!ATTLIST attribute isPrimaryKey (true|false) #IMPLIED>
 <!ATTLIST attribute name NMTOKEN #REQUIRED >
 <!ATTLIST attribute type CDATA #REQUIRED >
 <!ATTLIST attribute defaultValue CDATA #IMPLIED>

 <!ELEMENT record EMPTY >
 <!ATTLIST record name NMTOKEN #REQUIRED >

Unclassified LA-UR-06-5303

 44

Appendix D: Example Modeling Parameters Table Group
<?xml version = '1.0' encoding = 'UTF-8'?>
<!DOCTYPE modelparams SYSTEM "tablegroup.dtd">
<tablegroup>
 <table name="species">
 <schema>
 <attribute isPrimaryKey="true" name="name" type="java.lang.String"/>
 <attribute isPrimaryKey="false" name="mass" type="java.lang.Double"/>
 <attribute isPrimaryKey="false" name="charge" type="java.lang.Double"/>
 </schema>
 <record name="HMINUS" mass="9.393014E8" charge="-1"/>
 <record name="PROTON" mass="9.382720E8" charge="1"/>
 </table>

 <table name="beam">
 <schema>
 <attribute isPrimaryKey="true" name="name" type="java.lang.String"/>
 <attribute isPrimaryKey="false" name="I" type="java.lang.Double"/>
 <attribute isPrimaryKey="false" name="Q" type="java.lang.Double"/>
 </schema>
 <record name="default" I="0.020" Q="4.96894E-11"/>
 </table>

 <table name="adaptivetracker">
 <schema>
 <attribute isPrimaryKey="true" name="name" type="java.lang.String"/>
 <attribute isPrimaryKey="false" name="errortol" type="java.lang.Double" defaultValue="1.0E-3"/>
 <attribute isPrimaryKey="false" name="initstep" type="java.lang.Double" defaultValue="0.01"/>
 <attribute isPrimaryKey="false" name="maxstep" type="java.lang.Double" defaultValue="0.0"/>
 <attribute isPrimaryKey="false" name="norm" type="java.lang.Integer" defaultValue="0"/>
 <attribute isPrimaryKey="false" name="order" type="java.lang.Integer" defaultValue="2"/>
 <attribute isPrimaryKey="false" name="slack" type="java.lang.Double" defaultValue="0.05"/>
 <attribute isPrimaryKey="false" name="maxiter" type="java.lang.Integer" defaultValue="100"/>
 </schema>
 <record name="default"/>
 <record name="MEBT"/>
 <record name="DTL1"/>
 <record name="DTL2"/>
 <record name="DTL3"/>
 <record name="DTL4"/>
 <record name="DTL5"/>
 <record name="DTL6"/>
 <record name="CCL1"/>
 <record name="CCL2"/>
 <record name="CCL3"/>
 <record name="CCL4"/>
 <record name="SCLMed"/>
 <record name="SCLHigh"/>
 <record name="HEBT1" initstep="0.1" maxiter="100"/>
 <record name="IDmp-"/>
 <record name="RTBT1"/>
 <record name="Ring1"/>
 </table>

 <table name="twiss">
 <schema>
 <attribute isPrimaryKey="true" name="name" type="java.lang.String"/>
 <attribute isPrimaryKey="true" name="coordinate" type="java.lang.String"/>
 <attribute isPrimaryKey="false" name="alpha" type="java.lang.Double"/>
 <attribute isPrimaryKey="false" name="beta" type="java.lang.Double"/>
 <attribute isPrimaryKey="false" name="emittance" type="java.lang.Double"/>
 </schema>
 <record name="MEBT" coordinate="x" alpha="-1.620000" beta=" 0.155000" emittance="+3.02000e-006"/>
 <record name="MEBT" coordinate="y" alpha=" 3.230000" beta=" 0.381000" emittance="+3.46000e-006"/>
 <record name="MEBT" coordinate="z" alpha=" 0.019600" beta=" 0.584400" emittance="+3.86380e-006"/>
 <record name="DTL1" coordinate="x" alpha="-0.374691" beta=" 0.586174" emittance="+3.01915e-006"/>
 <record name="DTL1" coordinate="y" alpha="-0.231111" beta=" 0.137198" emittance="+3.45946e-006"/>
 <record name="DTL1" coordinate="z" alpha=" 0.299183" beta=" 0.471763" emittance="+3.86355e-006"/>
 <record name="DTL2" coordinate="x" alpha=" 2.701320" beta=" 0.700338" emittance="+1.73777e-006"/>

Unclassified LA-UR-06-5303

 45

 <record name="DTL2" coordinate="y" alpha="-2.603076" beta=" 0.794770" emittance="+1.99123e-006"/>
 <record name="DTL2" coordinate="z" alpha="-0.397774" beta=" 0.403277" emittance="+2.20041e-006"/>
 <record name="DTL3" coordinate="x" alpha=" 1.297644" beta=" 0.549192" emittance="+9.92285e-007"/>
 <record name="DTL3" coordinate="y" alpha="-3.214553" beta=" 1.824498" emittance="+1.13702e-006"/>
 <record name="DTL3" coordinate="z" alpha=" 0.196423" beta=" 1.817600" emittance="+1.21681e-006"/>
 <record name="DTL4" coordinate="x" alpha=" 2.014815" beta=" 1.248958" emittance="+7.49028e-007"/>
 <record name="DTL4" coordinate="y" alpha="-2.002180" beta=" 1.295824" emittance="+8.58283e-007"/>
 <record name="DTL4" coordinate="z" alpha="-0.383242" beta=" 1.495460" emittance="+8.87229e-007"/>
 <record name="DTL5" coordinate="x" alpha="-0.080589" beta=" 2.648011" emittance="+6.25412e-007"/>
 <record name="DTL5" coordinate="y" alpha="-0.165355" beta=" 0.735660" emittance="+7.16623e-007"/>
 <record name="DTL5" coordinate="z" alpha="-0.565187" beta=" 2.410661" emittance="+7.16145e-007"/>
 <record name="DTL6" coordinate="x" alpha=" 2.126661" beta=" 1.792066" emittance="+5.49904e-007"/>
 <record name="DTL6" coordinate="y" alpha="-1.977689" beta=" 1.719692" emittance="+6.30142e-007"/>
 <record name="DTL6" coordinate="z" alpha="-0.068538" beta=" 2.218784" emittance="+6.10027e-007"/>
 <record name="CCL1" coordinate="x" alpha="-3.279096" beta=" 3.879661" emittance="+5.00893e-007"/>
 <record name="CCL1" coordinate="y" alpha=" 0.810056" beta=" 0.766892" emittance="+5.73962e-007"/>
 <record name="CCL1" coordinate="z" alpha=" 0.653812" beta=" 3.145347" emittance="+5.40359e-007"/>
 <record name="CCL2" coordinate="x" alpha=" 2.473646" beta=" 3.594577" emittance="+4.48495e-007"/>
 <record name="CCL2" coordinate="y" alpha="-0.946671" beta=" 1.394213" emittance="+5.13934e-007"/>
 <record name="CCL2" coordinate="z" alpha="-0.773927" beta=" 4.520875" emittance="+4.65244e-007"/>
 <record name="CCL3" coordinate="x" alpha=" 2.283667" beta=" 4.582043" emittance="+4.02964e-007"/>
 <record name="CCL3" coordinate="y" alpha="-1.293711" beta=" 2.236370" emittance="+4.61762e-007"/>
 <record name="CCL3" coordinate="z" alpha=" 0.538514" beta=" 3.153244" emittance="+3.99505e-007"/>
 <record name="CCL4" coordinate="x" alpha=" 2.787507" beta=" 7.072388" emittance="+3.65633e-007"/>
 <record name="CCL4" coordinate="y" alpha="-1.313166" beta=" 3.617282" emittance="+4.18994e-007"/>
 <record name="CCL4" coordinate="z" alpha="-0.634955" beta=" 4.202553" emittance="+3.45471e-007"/>
 <record name="SCLMed" coordinate="x" alpha="-1.573126" beta=" 8.131378" emittance="+3.34159e-007"/>
 <record name="SCLMed" coordinate="y" alpha=" 0.684698" beta=" 8.634511" emittance="+3.82927e-007"/>
 <record name="SCLMed" coordinate="z" alpha=" 0.213766" beta=" 6.071008" emittance="+2.99985e-007"/>
 <record name="SCLHigh" coordinate="x" alpha=" 0.379621" beta=" 4.666692" emittance="+2.19297e-007"/>
 <record name="SCLHigh" coordinate="y" alpha=" 2.364523" beta="13.876136" emittance="+2.51303e-007"/>
 <record name="SCLHigh" coordinate="z" alpha="-1.622597" beta=" 9.553335" emittance="+1.40606e-007"/>
 <record name="HEBT1" coordinate="x" alpha=" 1.014436" beta=" 3.569722" emittance="+1.21644e-007"/>
 <record name="HEBT1" coordinate="y" alpha="-1.748688" beta=" 9.444302" emittance="+1.39475e-007"/>
 <record name="HEBT1" coordinate="z" alpha="-103.218446" beta="7096.290320" emittance="+3.67111e-008"/>
 <record name="HEBT2" coordinate="x" alpha="-0.641247" beta=" 4.717389" emittance="+1.21644e-007"/>
 <record name="HEBT2" coordinate="y" alpha=" 1.777757" beta="19.469339" emittance="+1.39475e-007"/>
 <record name="HEBT2" coordinate="z" alpha="-170.8246" beta="18586.384" emittance="+3.67111e-008"/>
 <record name="IDmp-" coordinate="x" alpha=" 0.073049" beta="12.568964" emittance="+1.21644e-007"/>
 <record name="IDmp-" coordinate="y" alpha="-0.271860" beta="11.454688" emittance="+1.39475e-007"/>
 <record name="IDmp-" coordinate="z" alpha="-314.2278" beta="58746.924" emittance="+3.67111e-008"/>
 <record name="IDmp+" coordinate="x" alpha="-0.057543" beta="12.588942" emittance="+1.21644e-007"/>
 <record name="IDmp+" coordinate="y" alpha="-0.560435" beta="13.467029" emittance="+1.39475e-007"/>
 <record name="IDmp+" coordinate="z" alpha="-316.8352" beta="59691.567" emittance="+3.67111e-008"/>
 <record name="RTBT1" coordinate="x" alpha="-1.3168" beta="5.8471" emittance="1.60e-4"/>
 <record name="RTBT1" coordinate="y" alpha=" 0.6831" beta="9.2607" emittance="1.60e-4"/>
 <record name="RTBT1" coordinate="z" alpha="-0.0036" beta="9589.2334" emittance="11.4e-3"/>
 <record name="Ring1" coordinate="x" alpha="0.05" beta="11.8" emittance="1.50e-7"/>
 <record name="Ring1" coordinate="y" alpha=" 0.05" beta="13.4" emittance="1.50e-7"/>
 <record name="Ring1" coordinate="z" alpha="1." beta="18586.384" emittance="+5.e-8"/>
 </table>

 <table name="location">
 <schema>
 <attribute isPrimaryKey="true" name="name" type="java.lang.String"/>
 <attribute isPrimaryKey="false" name="species" type="java.lang.String"/>
 <attribute isPrimaryKey="false" name="W" type="java.lang.Double"/>
 <attribute isPrimaryKey="false" name="elem" type="java.lang.String" defaultValue=""/>
 <attribute isPrimaryKey="false" name="s" type="java.lang.Double" defaultValue="0"/>
 <attribute isPrimaryKey="false" name="t" type="java.lang.Double" defaultValue="0"/>
 </schema>
 <record name="MEBT" species="HMINUS" W="2.5E6"/>
 <record name="DTL1" species="HMINUS" W="2.5E6"/>
 <record name="DTL2" species="HMINUS" W="7.525E6"/>
 <record name="DTL3" species="HMINUS" W="2.2885E7"/>
 <record name="DTL4" species="HMINUS" W="3.9765E7"/>
 <record name="DTL5" species="HMINUS" W="5.6536E7"/>
 <record name="DTL6" species="HMINUS" W="7.2521E7"/>
 <record name="CCL1" species="HMINUS" W="86.828E6"/>
 <record name="CCL2" species="HMINUS" W="107.161E6"/>

Unclassified LA-UR-06-5303

 46

 <record name="CCL3" species="HMINUS" W="131.142E6"/>
 <record name="CCL4" species="HMINUS" W="157.214E6"/>
 <record name="SCLMed" species="HMINUS" W="185.6266E6"/>
 <record name="SCLHigh" species="HMINUS" W="391.4331E6"/>
 <record name="HEBT1" species="HMINUS" W="1001.122E6"/>
 <record name="HEBT2" species="HMINUS" W="1001.122E6"/>
 <record name="IDmp-" species="HMINUS" W="1001.122E6"/>
 <record name="Ring1" species="PROTON" W="1000.025E6"/>
 <record name="Ring2" species="PROTON" W="1000.025E6"/>
 <record name="Ring3" species="PROTON" W="1000.025E6"/>
 <record name="Ring4" species="PROTON" W="1000.025E6"/>
 <record name="Ring5" species="PROTON" W="1000.025E6"/>
 <record name="IDmp+" species="PROTON" W="1000.025E6"/>
 <record name="RTBT1" species="PROTON" W="1000.025E6"/>
 </table>
</tablegroup>

