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Abstract 
 

This document describes the basic configuration mechanism of the high-level accelerator-
application development environment known as XAL.  Specifically, we describe how to configure the XAL 
system to a given particle accelerator site.  The primary purpose of XAL is the rapid development of high-
level applications needed for control and operation of charged-particle beam accelerators and accelerator 
systems.  We begin with an overview of XAL, discussing the basic design philosophy and architecture.   To 
utilize the XAL environment, it must be configured to the specific accelerator site, after which, applications 
may be written in a more general fashion, in particular, without regard to the specific machine to which it 
applies.  There are four main XML files used to configure XAL to a given accelerator site: the main file, 
the optics file, the timing file, and the model-parameters file.  There is also a legacy mechanism for 
entering particle beam data (used in simulation) known as the probe file.  We discuss all of these files in 
detail.   
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1 Introduction 
The XAL software system is a programming environment specifically designed for developing 

high-level control applications for charged-particle accelerator systems.  In its initial inception, it began as 
a support tool for the Spallation Neutron Source (SNS) in Oak Ridge, Tennessee, which continues to be the 
primary source of development activity.  However, collaborative development efforts have existed at Los 
Alamos National Laboratory, Brookhaven National Laboratory, and, most recently Stanford Linear 
Accelerator.  XAL attempts to provide a uniform standard for building high-level control applications for 
accelerator systems.  It provides a common hardware-independent platform for building such applications.  
In this manner different accelerator sites can share software, leverage off existing development, and 
participate in collaborations where common interests occur. 

This presentation first provides a brief introduction to XAL, then discusses in detail the XAL 
configuration mechanism.  Specifically, we explain how to configure XAL to a particular accelerator 
complex.  This activity primarily consists of describing the hardware arrangement of an accelerator 
complex and informing XAL of all the corresponding control signals (process variables) of the given 
hardware.  As we shall see, this task is accomplished through the proper construction of a set of formatted 
XML (eXtended Markup Language [15]) files.  Once these files are built, we may develop control 
applications using the XAL environment, and use many of the existing applications that ship with XAL. 

1.1 XAL Overview 
The basic purpose of XAL is to provide a high-level programming interface for charged-particle 

accelerator systems.  That is, we write programs that communicate with the machine hardware from a high-
level “physics perspective”, rather than a lower-level “engineering perspective” (e.g., EPICS 
programming).  XAL also attempts to provide uniformity in programming practice and in the developed 
applications.  For example, XAL applications all present a uniform look and feel.  Moreover, MKS units 
are typically used, the notable exceptions being described here.  XAL also contains many “off-the-shelf” 
tools for building applications, such as an optimization package, a signal processing package, and a GUI 
framework.  Typically, these tools are “boxed” according to a standard programming interface so that 
different tools within the same package may be swapped in and out.  An UML mechanism diagram of the 
XAL system is shown in Figure 1.  In the diagram we can see the four main mechanisms of XAL: a 
physics-centric representation of the hardware, an online simulator for model-based control applications, 
high-level connection management including synchronization between the hardware and the model, and a 
suite of common tools available to all XAL users.  For a more comprehensive overview of the XAL 
environment one may consult references [6], [7], [8], and [14]. 

 

Figure 1: XAL  mechanisms
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The XAL 
environment can be thought 
of as middleware between 
the applications programmer 
and the lower-level EPICS 
(Experimental Physics and 
Industrial Control System) 
software.  Or as an 
alternative view, XAL 
provides an additional layer 
of abstraction from the 
EPICS communication 
layer.  Where EPICS is 
essentially “flat”, that is, all 
signals look alike; XAL 
presents the machine 
structure to the application 
developer.  This concept is 
depicted in Figure 2 were we 
show the interdependencies 
of various parts in an 
accelerator control system.  
Notice in the figure that the application developer may ignore the GUI mechanism of XAL, or XAL 
altogether.  XAL also communicates directly with Matlab [11] and the Jython [10] implementation of the 
Python scripting language.  Thus, prototype applications may be quickly built from these scripting 
environments for testing and debugging. 

Note also in the figure that XAL can support multiple communication protocols, in particular the 
EPICS channel access (CA) or Cosylab’s Abeans [8].  The notion of a communication channel is abstracted 
in XAL.  Although the application developer will probably seldom interact with channels directly, XAL 
treats every channel object in a uniform manner.  The details of implementing a concrete channel are left to 
the underlying communications protocol.  So far, EPICS has been the primary communications support 
protocol. 

 

To support its physics-centric view of the accelerator, the XAL applications programming 
interface (API) is object-oriented where hardware objects such as beam position monitors (BPM), steering 
magnets, and quadrupole magnets are encapsulated by software objects.  XAL provides a multi-layered 
view of the entire accelerator, which is configured dynamically (i.e., at run time).  The developer may 

 
Figure 2: XAL in the control system hierarchy 

 
Figure 3: the XAL hardware datagraph 
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inspect the hardware configuration by traversing through a tree-like data structure of software objects.  An 
UML instance diagram of this XAL “datagraph” is shown in Figure 3 for section of an example accelerator.  
Using this capability, the application developer is able write applications that are not “hard-coded” to a 
particular machine configuration.  The practice of building “one-off” control applications that function only 
for a specific accelerator site can be eliminated with proper programming in XAL.   

1.2 Basic Architecture of XAL 
The 

architecture of XAL 
is based upon modern 
software engineering 
principles.  In 
particular, XAL is 
implemented with a 
component-based 
architecture.  The 
modern software 
engineering 
philosophy prescribes 
that very large 
software systems 
should be composed 
of modular 
components that fit 
together with well-
defined software 
interfaces.   This 
situation is exactly 
analogous to modern hardware design methodology where large systems are assembled from smaller 
components.  For example, a computer is built from integrated circuits, circuit boards, hard drives, memory 
cards, and peripherals which all communicate via well-defined hardware interfaces (e.g., VMI, SCSI, PCI, 
USB, etc.).  As long as the interfaces remain unchanged, hardware components which understand these 
interfaces may be swapped in or out of the system.  Likewise, the situation exists with modern software 
systems.  Thus, the difficult part is designing an interface that will accommodate all the requirements of the 
system components, including potential upgrades.  Figure 4 is an UML component diagram showing some 
of the major components of XAL.  There we see that the connection mechanism is a separate component of 
XAL, where either JCA (Java channel access), CAJ (channel access in Java), or Abeans may be used for 
the actual communication.  Also shown in the figure is the configuration mechanism.  This feature is 
accommodated (ideally) using a master database containing the machine hardware description from which 
a set of XML configuration files is instantiated.  The XML files have a specific format and were intended 
to provide independence between database configuration and XAL development. 

1.3 XAL Configuration Mechanism 

Figure 4: UML component diagram of XAL 
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XAL is built on 
the principle of dynamic 
configuration.  That is, 
XAL adapts to the current 
configuration of the 
underlying accelerator 
hardware, rather than 
building applications 
which a particular 
machine configuration.  
The component that drives 
this mechanism is a set of 
XML configuration files, 
as shown in Figure 5.  The 
root file in the hierarchy is 
main.xal; it contains the 
names and locations of the 
other files in the XAL 
configuration mechanism.  
Currently there are three 
main files to which the root file main.xal points: one describes the hardware configuration of the 
accelerator (sns.xdxf in Figure 5), another describes the parameters required for beam simulation or 
“model parameters” of the machine (model.params in Figure 5), and the last describes the set of process 
variables (PVs) used for timing purposes (timing_pvs.tim in Figure 5).  There also may exist separate 
“probe” files, Figure 5 depicts such a file called MebtEntr.probe.  The data in such a file describe beam 
parameters necessary to instantiate a “beam probe” for machine simulation.  This probe-file mechanism has 
more or less been deprecated by the model parameters file, whose data includes that of a probe file.  
However, such files may still be convenient in some circumstances. 

Excerpt 1 shows the contents of main.xal for the situation depicted in Figure 5.  The first line is 
standard XML protocol specifying the character encoding used within the document (in this case UTF-8, or 
Unicode Transformed Format 8).  The second line is important.  It indicates the Document Type Definition 
file, or DTD file, specifying the data format in the current XML files; for XAL the DTD file is xdxf.dtd.  
Essentially, then, the xdxf format is the major topic of the presentation.  DTD files are a means of not only 
specifying the format of an XML file, but enforcing it as well.  However, DTDs are essentially being 
replaced by XML Schema Definitions, or XSDs.  These format specifications are more flexible and can 
maintain tighter control of the XML layout.  Currently there is no XSD within the XAL configuration 
system, which continues to use the DTD file xdxf.dtd.  A listing of xdxf.dtd is provided in Appendix A.  
For those familiar with DTD files, this listing may help in the understanding of the XAL configuration 
mechanism.  The sequel is devoted towards the explanation of the xdxf format and how to use it in order to 
describe the hardware configuration of an accelerator system. 

The rest of main.xal contains a listing of all the configuration files used by XAL.  These files are 
listed under the XML element tag <sources>.  The element <optics_source> contains the URL of the file 
defining the hardware configuration of the accelerator (in the xdxf format); in this case sns.xdxf.  The 
xdxf format specifies that there can be only one <optics_source> element, that is, it is a singleton.  There 

Figure 5: XAL configuration files 

optics = sns.sdxf 
model = model.params 
timing = timing_pvs.tim 

hardware config 

model parameters 

timing PVs 

main.xal

sns.xdxf

model.params 

timing_pvs.tim beam parameters 

MebtEntr.probe

<?xml version = '1.0' encoding = 'UTF-8'?> 
<!DOCTYPE sources SYSTEM "xdxf.dtd"> 
<sources> 
 <optics_source name="optics" url="sns.xdxf"/> 
 <timing_source name="timing" url="timing_pvs.tim"/> 
 <tablegroup_source name="modelparams" url="model.params"/> 
</sources> 

Excerpt 1: contents of main.xal
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are two attributes in the <optics_source> element, name and url.  Since <optics_source> is a singleton 
element, the value of the name attribute is the identifier string of the XAL data graph.  Since this is a 
singleton the value of its identifier is arbitrary, the user should pick a value that makes sense in context of 
the machine.  The second attribute, url, points to the location of the actual file containing the configuration 
data (i.e., it is the URL of the configuration file).  The next element, <timing_source>, also a singleton, 
points to a file which lists all the general timing signals used by XAL.  Such signals are used by 
applications that trigger on certain events, like an RF pulse, or monitor certain aspects of the machine, such 
as the orbit.  It, too, has the attributes name and url, and they are used in exactly the same way as for an 
<optics_source> element.  Finally, the last element, <tablegroup_source>, is an example of what is 
called a table group in XAL.   

Table groups contain arbitrary user data, stored in a schema-based table format, which is not 
otherwise part of the XAL specification, but available within the XAL framework.  They are XAL’s 
mechanism for providing dynamic data to applications and are discussed in detail within Chapter 4.  There 
can be many <tablegroup_source> elements in main.xal and, thus, many table groups within the XAL 
framework.  The attributes of a <tablegroup_source> element are, again, name and url.  They are used just 
as the previous source elements, with the exception that the name attribute be unique.  This requirement is 
necessary since there can be multiple <tablegroup_source> element; the unique value of the name attribute 
is used to refer to the particular table group within XAL.  There is one special case of a table group within 
XAL, that having the name attribute with value “modelparams”.  This is the case shown in Excerpt 1.  This 
particular table group is called the “model parameters” table group.  This table group has a pre-defined 
format recognized by XAL to contain all the modeling data not directly associated with the machine 
hardware.  In particular, all the beam parameters are contained in this file, as well as numeric parameters 
for doing simulations.  The format of this special table group is discussed in Section 4.2. 

1.4 XAL Persistent Data 
Within XAL the various XML configuration files are managed by the class 

gov.sns.xal.smf.data.XMLDataManager.  Instances of this class are the primary method for providing 
access to XAL’s persistent data (i.e., data shared between XAL applications and maintained over time).  
This class is capable of not only loading XAL data but storing it as well.  Thus, the optics file and any table 
groups may be modified using this class.  The application developer would typically create an instance of 
XMLDataManager, point it to the URL of the main.xal file, then use it to built the XAL data graph 
representing the accelerator hardware.  Of course, there are already mechanisms available in the application 
framework within XAL providing such services, yet, we wish to point out the nature of the 
XMLDataManager class since it is central to the XAL configuration mechanism. 

Once an instance of XMLDataManager is pointed to the main.xal XAL file, the output is a 
populated instance of the data structure held in the Accelerator class.  An instance of Accelerator is a 
representation of all the machine hardware and some supporting systems according to the configuration 
described in the optics file, timing file, and any miscellaneous data from the table groups.  The 
XMLDataManager class employs two support classes from the same package, TimingDataManager and 
OpticsSwitcher.  The TimingDataManager class is responsible for reading the timing file (described in 
Section 3) and creating a TimingCenter object, which is attached to the Accelerator object.  The 
XMLDataManager also contains an internal class, TableManager, for reading and storing any miscellaneous 
table group data identified by <tablegroup_source> elements in the main configuration file.  This 
auxiliary data is accessible from a singleton EditContent object, which is also attached to the Accelerator 
object.  The EditContext object is like a miniature relational database, it is the method by which XAL 
programmatically stores and retrieves table group data that does not otherwise fit into the current 
architecture.  It is part of the gov.sns.tools.data package, which it shares with many of its component 
classes.  Again, for a full description of this data mechanism see Chapter 4. 

2 Accelerator Optics: The <optics_source> File 
The optics configuration file, or optics file in XAL terminology, is tagged <optics_source> in 

main.xal.  It contains the hardware components of the accelerator and their current configuration.  
Obviously XAL is not concerned with every hardware component in the machine, only those pertinent to 
high-level control.  So there are many components of the machine that are not in the optics file (e.g., 
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gimbals, rheostats, cryostats, etc.).  XAL presents to the high-level applications programmer only hardware 
objects to that are listed in the optics file.  Thus, if a piece of hardware is irrelevant to high-level operations, 
then it is simply omitted from this file.  The hardware configuration file also provides binding between a 
hardware component, other related components, and the process variables which control them.  For 
example, a quadrupole magnet may be listed in the configuration file, along with its bulk power supply 
(i.e., a power supply connected to several quadrupole magnets) its trim coil, the process variables (signals) 
that control them, and the read back signals for all. 

The optics file is composed primarily of the XML elements <node>, <sequence>, <comboseq>, 
<channelsuite>, and <powersupplies>.  A <node> element represents a basic hardware object, such as a 
wire scanner, a beam position monitor (BPM), or a steering magnet.  A <sequence> element contains a 
linear sequence of <node> elements representing a sector of the accelerator system.   A <comboseq> 
element describes the various ways that sequences may be pasted together to form viable beam paths within 
the accelerator system.  This feature is essential for accelerator complexes having multiple beamlines, that 
is, systems where the beam may propagate down several different paths.  The user of an XAL application 
may select one of these possible beam paths for analysis.  With the use of <comboseq> objects his or her 
choice is restricted to the viable beamlines within the complex.  The <channelsuite> element is the 
method by which XAL associates hardware objects to their control signals.  Each hardware object typically 
has a “suite” of appropriate control signals by which the user may interact.  For example, a steering magnet 
typically has signals for setting the dipole current and observing the actual current value seen at the magnet 
location.  Finally, the <powersupplies> element contains a listing of all the power supplies relevant to the 
XAL accelerator description.  Although this element is not contained in the xdxf specification (it was 
added to XAL later), it is an extremely important component of the optics file and XAL will not function 
correctly without it.  There should be only one <powersupplies> entry and typically it occurs at the end of 
the optics file.  We consider each of these XML elements in detail. 

Excerpt 2 shows the initial section of a typical 
XAL optics file.  The first two lines are similar to that of the 
main.xal file, they are XML requirements specifying the 
character encoding and any XML format specifications 
(e.g., the xdxf DTD specification).  The next line is the first 
XML element in the file, the <xdxf> element.  There is only 
one <xdxf> element in the optics file and it contains a 
description of the all the accelerator hardware considered by 
XAL.  That is, the <xdxf> element is the root of the accelerator hierarchy, containing all the accelerator 
hardware information in the optics file.  As seen in the xdxf.dtd file, there are three required XML 
attributes of the <xdxf> element, system, ver, and date.  These attributes are listed in Table 1.  The system 
attribute is the name of the accelerator system that is described in the <xdxf> element.  In Excerpt 2, its 
value is “sns” indicating that the optics file describes the Spallation Neutron Source.  The ver attribute 
contains any versioning information associated with the file.  This feature allows users to monitor changes 
in the XAL configuration with a version stamp, facilitating more accurate comparisons of archived data.  
The final attribute, date, contains the date in which the optics file was last built.  The date value can be 
expressed in the ISO 8601 standard [12], however, any date format recognized by the Java class 
DateFormat [9] is valid. 

<?xml version = '1.0' encoding = 'UTF-8'?> 
<!DOCTYPE xdxf SYSTEM "xdxf.dtd"> 
<xdxf system="sns" ver="2.0.0" date="Fri Jan 27 14:08:32 EST 2006"> 
  <comboseq id="MEBT-DTL"> 
   <sequence id="MEBT"/> 
   <sequence id="DTL1"/> 
   <sequence id="DTL2"/> 
   <sequence id="DTL3"/> 
   <sequence id="DTL4"/> 
   <sequence id="DTL5"/> 
   <sequence id="DTL6"/> 
  </comboseq> 

Excerpt 2: example XAL optics file 

Attribute Description 
system accelerator system name 
ver File version stamp 
date File build date 

Table 1: <xdxf> attributes 
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2.1 Basic Hardware Objects: The <node> Element 
All basic hardware elements are described 

by <node> element entries within the optics file.  
Excerpt 3 is an example of a typical <node> entry; in 
this case the node represents a quadrupole magnet 
connected to a bulk power supply and oriented for 
focusing in the horizontal direction (type code 
“QH”).  There are three required XML attributes of 
every <node> element and two optional attributes.   
All these attributes are listed in Table 3.  The 
required attributes are type, id, and pos.  The type attribute is the hardware type identifier string; these 
identifiers are listed in Table 2.  The id attribute contains the unique identifier string of the hardware object 
which the <node> represents.  This attribute is generally the same identifier given to the device in the 
global database, or machine schematics.  The pos attribute is the offset (in meters) of the hardware object 
from the beginning of its container <sequence>.  Thus, the value of pos is actually the position of the 
<node> within the accelerator sector described by the parent <sequence> element.  The pos attribute always 
refers to the position of the <node> center location.  The optional attributes of a <node> element are len 
and status.  The len attribute represents the length of the element, taken to be zero if absent.  The status 
attribute is basically now a legacy feature of XAL meant to indicate whether or not a hardware component 
was on line.  If present it should 
always be set to “yes”. 

2.1.1 Node Attribute Buckets 
The first child element of the 

<node> element we consider is 
<attributes>.  According to the 
current xdxf format, this element is 
required.  The <attributes> entry is 
meant to contain design parameters 
for the <node>, called “attribute 
buckets” in XAL terminology.  The 
<attributes> entry may optionally 
contain three child elements called  
<align>, <magnet>, and <rfgap>.  
There are also other attribute buckets 
not listed in the xdxf format that may 
be contained in this section.  These 
buckets contain parameters for 
specialized nodes that were added to 
XAL later in the development, such 
as parameters for the specialized ring 

Attribute Description 
type Type identifier (see Table 2) 
id Unique identifier string 
pos Position within sector (m) 
len Length of hardware node (m) 

status Legacy parameter (=”yes”) 
Table 3: <node> element attributes 

XAL Accelerator Node Types 
Type 

Id 
XAL Class Hardware Object 

BCM CurrentMonitor Beam current monitor 
Bnch ReBuncher Re-buncher cavity 
BPM BPM Beam position monitor 
DCH HDipoleCorr Dipole corrector, hor. 
DCV VDipoleCorr Dipole corrector, vert. 
QH Quadrupole Quadrupole magnet, hor. 
QV Quadrupole Quadrupole magnet, vert. 

PMQH PermQuadrupole Permanent mag. quad. 
hor. 

PMQV PermQuadrupole Permanent mag. quad. 
ver. 

RG RfGap Radio frequency gap 
WS ProfileMonitor Wire scanner 
DH Bend Dipole bend magnet, hor. 
DV Bend Dipole bend magnet, 

vert. 
RBPM RingBPM Ring BPM

<node type="QH" id="MEBT_Mag:QH01" pos=".128" len=".061" status="true"> 
  <attributes> 
    <magnet len=".061" polarity="-1" dfltMagFld="-34.636"/> 
      <align x="0.0" y="0.0" z="0.0" pitch="0" yaw="0" roll="0"/> 
      <aperture shape="0" x=".016"/> 
   </attributes> 
  <ps main="MEBT_Mag:PS_QH01"/> 
  <channelsuite name="magnetsuite"> 

<channel handle="fieldRB" signal="MEBT_Mag:QH01:B"  
settable="false"/> 

  </channelsuite> 
</node> 

Excerpt 3: example 6<node> element for a horizontal quadrupole magnet 
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beam position monitors.  We discuss these specialized buckets below.  We shall see that the <sequence> 
element may also contain attribute buckets needed to specify collective properties of the accelerator sector 
which it describes.  We cover sequence attribute buckets when we discuss the properties of <sequence> 
elements.  Finally, we point out that, as of this writing, no attribute bucket may contain child elements.  
They are XML elements whose XML attributes contain design parameters of the device they are intended 
to describe. 

The <align> attribute bucket contains 
parameters describing the measured misalignments for 
the <node> element.  These attributes are listed in Table 
4.  As seen in the table, these parameters are x, y, z, the 
horizontal, vertical, and longitudinal offsets, 
respectively,  and pitch, yaw, roll, the angles 
describing the rotational offset of the <node>.  The 
pitch, yaw, and roll angles are the same as that in 
aeronautics, where we take the beam axis as the 
eigenaxis.  Specifically the pitch angle is the angle of 
inclination with respect to the horizontal (rotation about the x axis), the yaw angle is the horizontal 
deflection angle (rotation about the y axis), and the roll angle is the rotation about the beam axis (rotation 
about the z axis).  These angle are depicted graphically in Figure 6.  As of the current writing, the alignment 
parameters have not been utilized in the XAL model.  However, they are accessible from within the 
framework.   

The <magnet> attribute bucket contains the 
design attributes relevant to a <node> representing 
some type of magnet device.  The parameters of a 
<magnet> attribute bucket are listed in Table 5.  The 
first three parameters represent general characteristics 
of a magnet device.  Their interpretation depends upon 
the type of magnet being described in the <node> entry.  
They are len, specifying the effective length of the 
magnet (in meters), dfltMagFld, specifying the design 
field strength of the magnet, and polarity, specifying 
the field polarity.  For a dipole magnet the value of 
dfltMagFld is actually the field strength in Telsa.  
However, for a quadrupole magnet this value represents the field gradient, in Tesla per meter.  The value of 
polarity is somewhat complicated, thus, we discuss it in the next paragraph.  The next two parameters, 
multFieldNorm and multFieldSkew, are the field components in the normal direction and the tangential 
direction, respectively.  For the sake of clarity, it is unfortunate that within the XAL classes, the 
multFieldSkew value is actually referenced using the identifier “Tang” rather than “Skew”.  For example, 
you must use getTangField() rather than getSkewField() in the MagnetBucket class.  There is only one 
required attribute of a <magnet> attribute bucket, the len attribute. 

The interpretation of the 
polarity attribute is somewhat 
convoluted so we cover it in some depth.  
The attribute can have the values “−1” or 
“+1”, meaning negative or positive 
polarity, respectively.  Although polarity 
does determine the field direction with 
respect to the design direction, 
unfortunately, it actually refers 
specifically to the electric current 
direction with respect to its design 
direction.  In electromagnets the field 
polarities are actually opposite to those of 
the current.  So a polarity value of “−1” 

Attribute Description 
len Effective length (m)  

dfltMagFld Design field strength  
polarity Field direction (-1,+1) 

multFieldNorm Normal field component 
multFieldSkew Tangential field component 

bendAngle Dipole deflection angle (deg) 
dipoleEntrRotAngle Entrance pole face angle (deg) 
dipoleExitRotAngle Exit pole face angle (deg) 
dipoleQuadComponent Quadru. component of dipole 

pathLength Magnet path length (m) ??? 
Table 5: <magnet) attribute bucket parameters 

Attribute Description 
x Horizontal offset (m) 
y Vertical offset (m) 
z Longitudinal offset (m) 

pitch Rotat. about x axis (deg) 
yaw Rotat. about y axis (deg) 
roll Rotat. about z axis (deg) 

Table 4: align attribute bucket attributes 

x

y 
z

pitch 

yaw 

roll 

Figure 6: alignment angles 
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means negative current, but positive field direction.  In the case of a bending magnet, polarity indicates 
the bend direction while facing downstream, “−1” indicating a right bend and “+1” indicating a left bend.  
To make this situation easier to remember, consider the specific situation of a horizontal bending magnet.  
Then a value of “−1” indicates a bend in the negative x direction (the dipole fields point in the positive y 
direction) while a value of “+1” indicates a bend in the positive x direction (the dipole fields point in the 
negative y direction).  When the <node> entry describes a quadrupole magnetic, a polarity value of “−1” 
indicates a (horizontally) focusing quadrupole while a value of “+1” indicates a (horizontally) defocusing 
quadrupole.  Here, according to convention, focusing refers to focusing in the horizontal plane and negative 
current means positive field producing a focusing effect.  Apparently, for a dipole corrector magnet, (i.e., a 
steering magnet) polarity indicates the direction of the correction.  It is assumable that the situation is the 
same as that for a bending dipole, for a horizontal corrector a value “−1” means that positive current 
deflects in the  negative x direction while a value “+1” deflects in the positive x direction. 

The next five parameters of the 
<magnet> attribute bucket are particular to 
a dipole bending magnet.  They are 
bendAngle (in degrees), 
dipoleEntrRotAngle (in degrees), 
dipoleExitRotAngle (in degrees), 
dipoleQuadComponent (unitless), and 
pathLength (in meters).  The bendAngle 
attribute is the deflection of in the design 
trajectory caused by the bend.  A negative 
bend angle indicates a bend to the left 
(positive x direction for a horizontal 
dipole) while a positive angle indicates a 
bend to the right (negative x direction for 
a horizontal dipole).  The 
dipoleEntrRotAngle is the angle of the 
magnet pole face respect to the design 
trajectory at the magnet entrance, while dipoleExitRotAngle is analogous angle at the exit of the magnet.  
A pictorial representation of these parameters is shown in Figure 7.  Note that for a horizontal bend the 
angle is take positive if the pole face normal lies in the positive x bending plane.  The attribute 
dipoleQuadComponent specifies the quadrupole field component of the dipole magnet.  Clearly for an ideal 
dipole this value is zero.  The pathLength attribute is the path length through the dipole magnet.  In the 
case of a dipole the len attribute then refers to the physical 
length of the magnet, not the path length of the design 
trajectory.   

In the future it may be wise to create a separate 
attribute bucket for each magnet type, especially since the 
sextupole magnet modeling element is implemented.  For 
example we might have attribute buckets <dipolemag>, 
<quadrupolemag>, <sextupolemag>, etc., containing 
parameters specific to each device type.  However, recall 
that the only required attribute of a <magnet> attribute 
bucket is len.   Since the last four attributes are not used for 
a quadrupole magnet it is not necessary to specify them in 
the optics file. 

The <aperture> attribute bucket specifies the <node> aperture shape and size.  The <aperture> 
element has three attributes, x, y, and shape.  Attributes x and y state the horizontal and vertical dimensions 
of the aperture (in meters), respectively, while shape is an enumerated value indicating the shape of the 
aperture.  The enumerations for shape attribute are listed in Table 6, along with a description of the other 
attributes in the <aperture> attribute bucket.  Note to specify a circular aperture of radius r, we would set 
the following attributes x = r, y = r, and shape = 1. 

Attribute Description 

x Horizontal dimension (m) 
y Vertical dimension (m) 

shape Aperture geometry 
0 Unknown 
1 Ellipse 
2 Rectangle 
3 Diamond 

11 Irregular  
Table 6: <aperture> attribute bucket parameters

dipoleEntrRotAngle dipoleExitRotAngle 

bendAngle 

Figure 7: dipole bending magnet parameters 
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The last attribute bucket in the xdxf specification is the <rfgap> bucket.  Obviously, this set of 
parameters describes the properties of a radio frequency gap.  The important attributes of the <rfgap> 
attribute bucket are length, phaseFactor, ampFactor, TTF, endcell, and gapOffset.  There are additional 
attributes but they are either now legacy attributes or primarily used for testing.  The length attribute 
specifies the length of the gap in meters.  The TTF attribute is the transit time factor of the RF gap, which is 
a parameter determined by the geometry of the gap.  The remaining attributes are all related to the parent 
<sequence> object to which the <node> belongs.  Since an RF gap is assumed to be part of a larger 
accelerating structure, such as a drift tube linac or elliptical cavity, a <node> representing an RF gap is 
contained within a <sequence> representing such a structure.  Thus, this <sequence> is some type of 
electromagnetic cavity driven by a radio frequency source.  The attribute phaseFactor is the ratio of the RF 
phase at the first gap of the <sequence> to the 
RF phase at the current gap.  The attribute 
ampFactor is the ratio of the RF amplitude at 
the first gap to the RF amplitude at the current 
gap (typically “1”).  The attribute endcell is a 
flag to indicate whether or not the current RF 
gap is the final gap in the parent <sequence> 
(“0” if not, “1” if so).  The final attribute 
gapOffset, specifies the offset of the gap 
center relative to its specified position within 
the <sequence> (given by the <node>’s pos 
attribute). 

Finally, we discuss two <node> 
attribute buckets that are not in the xdxf 
specification, <bpm> and <twiss>.  The <bpm> 
attribute bucket naturally applies only to beam 
position monitors.  It has three attributes, 
length, frequency, and orientation, which 
are listed in Table 8.  The length attribute 
specifies the length of the stripline in the beam 
position monitor (in meters).  The frequency attribute is the phase frequency of the beam position monitor, 
which is unfortunately in megahertz rather than hertz.  The final attribute, orientation, is an enumeration 
indicating the direction of the leads, “-1” indicating that the leads come into the BPM from the downstream 
direction, “+1” indicating the upstream direction.   

The <twiss> attribute bucket lists the design Twiss (or Courant-Snyder) parameters of the beam at 
the current <node>.  Since the machine parameters and the beam parameters are now separately described 
within the XAL framework, this attribute bucket is now essentially a legacy feature and is not seen in the 
current configuration files.  However, for completeness we list its attributes which should be self 
explanatory: x, y, ax, bx, ex, ay, by, ey, az, bz, ez, etx, etpx, ety, etpy, mux, muy. 

2.1.2 Power Supplies: The <ps> Element 
Whenever a hardware object is attached to a 

power supply we see a <ps> (for “power supply”) 
element entry under the <node> entry.  This element is 
not currently listed in the xdxf format, but it is an 
important part of the configuration process, XAL will 
not function correctly without it.  The <ps> entry is 
used to indicate any power supply connected to the current <node> object, this includes differing types of 
power supplies such as those for a dipole corrector magnet or a quadrupole focusing magnet.  If an 
application developer wishes to change the field strength of a magnet, he must do so using the power 
supply object referenced by the <ps> entry.  Of course, doing so will also change the field strength of any 
other magnet connected to the supply.  Consequently, we see that this mechanism allows XAL to handle 
bulk supplies.  The XML attributes of a <ps> element when seen under the context of a <node> element are 
main and trim, as shown in Table 9, both optional but relevant only if at least one exists.  In Excerpt 3 we 
see that only the main attribute is present.  Either attribute specifies the unique identifier string of a power 

Attribute Description 
length Gap length (m) 

phaseFactor Ratio of phase at gap #1 to this gap 
ampFactor Ratio of RF amp at gap #1 to this gap 

TTF Transit time factor 
endCell Last gap flag (0 or 1) 
gapOffset Gap center offset (m) 

Table 7: <rfgap> attribute bucket parameters 

Attribute Description 
length BPM stripline length (m) 

frequency Phase frequency (MHz) 
Orientation Lead orientation (-1, +1) 

Table 8: <bpm> attribute bucket parameters 

Attribute Description 
main UID of a main power supply 
trim UID of a trim power supply 

Table 9: <ps> element attributes 
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supply described in the <powersupplies> entry of the optics file.  The <ps> element also has another 
context, as a child of the <powersupplies> element.  There, the <ps> element has different attributes.  For a 
full description of the XAL <powersupplies> element see Section 2.4, however, for the sake of 
completeness we offer a brief description of the power supply configuration mechanism below.     

In the singleton <powersupplies> entry, each power supply in the accelerator is described by a 
<ps> element entry.  In that context the <ps> element has two attributes, id and type (see Table 16).  The 
value of id is the unique identifier string of the power supply while the value of type is currently either 
“main” or “trim”.  If type equals “main” then the Java class type representing it in XAL is 
MainMagnetSupply.  If type equals “trim” then the object representing the supply is of class type 
MagnetTrimSupply.  The remaining part of the <ps> entry describes all the process variables connected to 
the power supply.  Returning to the context of a <node> element, the main attribute of <ps> points to a 
power supply feeding the current <node>, which must be of type “main”.  The trim attribute also points to 
a connected power supply, but of type “trim”.  Either of these two attributes may be present.  However, the 
most likely scenario is that either the main attribute appears alone, or in conjunction with a trim attribute.  
The later case describes a node that is connected to both a main supply and a trim supply.  There we 
assume the main supply is a bulk supply feeding many nodes, but the operating point of the current node 
can be varied around the quiescent point using the trim supply.  Typically there are also a readback signals 
directly listed in the <node> element’s channelsuite to verify the magnet strength (see Section 2.1.3).   

2.1.3 Node Connectivity: The <channelsuite> and <channel> Elements 
The last section of a <node> entry is the <channelsuite> element.  The <channelsuite> element 

contains a listing of all the signals specifically associated with that <node>.  A <channelsuite> element has 
an optional attribute name, which contains the identifier of the channelsuite.  This is not a unique identifier.  
It is primarily present as a description of the signal set.  For example, in Excerpt 3 we see that the name 
attribute has the value “magnetsuite”, implying that this is the set of channels for a magnet.   

Appearing under the <channelsuite> element 
is a listing of <channel> elements connected to the 
parent <node>.  The <channel> element is the 
mechanism by which XAL and the underlying 
communications protocol (e.g., EPICS) are bound.  
Each <channel> element describes a control signal 
connected to the parent <node>.  The <channel> 
element uses three attributes describing this signal, handle, signal, and settable.  These attributes are 
listed in Table 10.  The handle attribute specifies the name binding of the channel used internally within 
XAL.  This attribute is very important.  It indicates the type of communications channel and binds the 
channel to the XAL device field.  For example, in Excerpt 3 we see that the handle attribute of the 
<channel> entry in the <channelsuite> has the value “fieldRB”.  Thus, XAL knows that this is a 
readback signal for a horizontal quadrupole magnet and, thus, binds the channel to the getField() method 
of the Quadrupole object representing that <node>.   We discus this topic further in the next paragraph.  
The signal attribute is the channel name of process variable represented by the <channel>.  When EPICS 
is used as the communications protocol, the value of signal is the EPICS channel name.  The last attribute, 
settable, indicates whether or not the channel is bi-directional.  That is, can the user modify the value or 
state of the <channel> object.  If the <channel> is a readback process variable, this value is “0”, otherwise 
it is “1” indicating that it is “settable”.   

Within XAL itself, a channel is represented by an instance of the class Channel.  Seldom should it 
be necessary to interact directly with a Channel object, these objects are usually encapsulated by the 
methods of classes representing hardware devices.  However, if it is absolutely necessary to work with a 
Channel object (this typically results in less portable code), there are means to acquire references to them. 

In XAL’s current state, the channel handles (i.e., the handle attribute of a <channel> entry) are 
hard-coded in the classes representing the hardware objects.  All of these classes are children of the class 
gov.sns.xal.AcceleratorNode and belong to the Java package gov.sns.xal.smf.  In the future it may be 
wise to bind the channel handles with a properties file so they exist in a common location.  A convenient 
method for determining the channel handles is to consult the Javadoc for XAL.  Regrettably however, 

Attribute Description 
handle Internal XAL channel handle 
signal Channel name 

settable Bidirectional channel flag 
Table 10: <channel> element attributes 
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much of the Javadoc for the gov.sns.xal.smf package is currently incomplete, so it is quite probable that 
one may not find the desired value there.  Thus, the safest method is unfortunately also the most 
inconvenient, direct inspection of the source code for the node type under consideration. To help mitigate 
the inconvenience we list the set of current channel handles in Table 23 of Appendix B, with the caveat that 
these values may change in the future. 

2.2 Accelerator Sectors: The <sequence> Element 
Accelerator sectors are described with the <sequence> element in the xdxf format.  Typically a 

<sequence> element contains a linear listing of <node> elements, each describing a particular hardware 
object in the beamline.  However, <sequence> objects can also contain other elements, specifically 
<attributes>, <channelsuite>, and even other <sequence> objects.  In the later case a <sequence> 
element is nested in another <sequence> element in order to described composite accelerator components.  
There are no restrictions on the depth of this nesting. If a <channelsuite> element appears under a 
<sequence> listing, it is assumed that the sequence describes some type of macro device with collective 
properties, such as an RF cavity.  Typically, then, the <channelsuite> element will contain a listing of all 
the control process variables associated with that macro device (e.g., RF amplitude, RF phase, etc.).  
Finally, as with a <node> element, the <sequence> element also has a set of attributes.  These parameters 
listed under the <attributes> child element and describing collective properties of the sequence. 

Excerpt 4 shows an example <sequence> element entry in the XAL optics file.  This particular 
sequence represents a rebuncher cavity and contains only one <node> object, an RF gap.  The rest of the 
<sequence> entry contains the process variables associated with the rebuncher, under the <channelsuite> 
listing, and the attribute buckets of the <sequence>, under the <attributes> element.  Note also the XML 
attributes of the <sequence> element, these are also essential for XAL operation. We cover all of these 
points in this subsection. 

<sequence type="Bnch" id="MEBT_RF:Bnch01" pos=".528" len=".13" status="true"> 
   <attributes> 
      <align x="0.0" y="0.0" z="0.0" pitch="0" yaw="0" roll="0"/> 
      <sequence predecessor=”null”/> 
      <rfcavity                 amp="1.3" 
             TTFCoefs=".445, 0, 0" 
             TTFPrimeCoefs="0, 0, 0" 
             STFCoefs="0, 0, 0" 
             STFPrimeCoefs="0, 0, 0" 
             TTF_endCoefs=".445, 0, 0" 
             TTFPrime_EndCoefs="0, 0, 0" 
             STF_endCoefs="0, 0, 0" 
             STFPrime_endCoefs="0, 0, 0" 
             structureMode="0" 
             phase="-90" freq="402.5"/> 
   </attributes> 
   <channelsuite name="rfsuite"> 
     <channel handle="cavAmpSet" signal="MEBT_LLRF:FCM1:CtlAmpSet" settable="true"/> 
     <channel handle="cavPhaseSet" signal="MEBT_LLRF:FCM1:CtlPhaseSet" settable="true"/> 
     <channel handle="cavAmpAvg" signal="MEBT_LLRF:FCM1:cavV" settable="false"/> 
     <channel handle="peakErr" signal="MEBT_LLRF:FCM1:PeakErr" settable="false"/> 
     <channel handle="regErr" signal="MEBT_LLRF:FCM1:RegErr" settable="false"/> 
     <channel handle="resErrAvg" signal="MEBT_LLRF:ResCtrl1:ResErr_Avg" settable="false"/> 
     <channel handle="cavPhaseAvg" signal="MEBT_LLRF:FCM1:cavPhaseAvg" settable="false"/> 
     <channel handle="deltaTRFStart" signal="MEBT_LLRF:FCM1:deltaTRFStart" settable="true"/> 
     <channel handle="deltaTRFEnd" signal="MEBT_LLRF:FCM1:deltaTRFEnd" settable="true"/> 
     <channel handle="tDelay" signal="MEBT_LLRF:FCM1:tDelay" settable="true"/> 
   </channelsuite> 
   <node type="RG" id="MEBT_RF:Bnch01:Rg01" pos="0"> 
     <attributes> 
        <rfgap length="0.13" phaseFactor="0" ampFactor="1" TTF="0.445" endCell="0" 
               gapOffset="0"/> 
     </attributes> 
   </node> 
</sequence> 

Excerpt 4: example <sequence> listing 
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2.2.1 Sequences Representing RF Cavities 
Since XAL very often uses sequence elements to represent RF accelerating structures, we digress 

briefly to review RF cavities in general and elaborate specifically on how they are modeled in XAL.  
Consider Figure 8 where we depict a model of an RF cavity.  Figure 8a) shows a four-cell superconducting 
elliptical cavity while Figure 8b) shows our generalized model for all RF cavity structures.  The elliptical 
cavity is included to demonstrate how most accelerating structure geometries can be considered under the 
current model.  In the figure each gap has an index n = 1,2,…,N; the index n = 0 is reserved for the entrance 
to the cavity.  We denote by Wn the energy of the beam before entering gap n and Wn+1 the energy of the 
beam after gap n.  For example, W0 is the energy of the beam entering the cavity and W1 is the beam energy 
after the first gap.  Likewise, denote the particle phase at the center of each gap as φn, reserving φ0 for the 
particle phase at the moment it enters the cavity.  Thus, φ0 actually represents a process variable, the phase 
of the driving RF klystron. 

Now consider a single 
beam particle propagating on-axis 
through the RF cavity.  Its 
location is described completely 
by the path length parameter s.  
Within an RF cavity there is a 
longitudinal electric field Ez which 
accelerates our beam particle.  
This field Ez has the time varying 
form Ez(s;t) = Ez(s)cos(ωt+φ0) 
where ω is the angular frequency 
of the RF and φ0 is the phase 
offset.  Letting φ(s) represent the 
phase of the particle (with respect 
to the RF) at axial position s = 
s(t), then the field seen by the 
particle is given by Ez(s)cos[φ(s)].  
Accordingly, the energy W(s) of 
this particle is given by its initial 
energy W0 (upon entering the 
cavity) plus the work done on it by the axial field Ez.  We have 
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where q is the unit charge, Z is the particle charge-state number, and k(s) is the wave number at axial 
location s.  Although presented as a function of path length s, the wave number k is more specifically a 
function of the particle normalized velocity β, which is in turn a function of s (due to the accelerating 
fields).  (Note cs /&≡β , where c is the speed of light.)  We have 
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where λ is the RF wavelength in free space.  Eqs. (1) are more or less exact, however, they are not terribly 
useful for analysis, or even computation.  The difficulty arises in that these integral equations are coupled 
due to the particle velocity’s implicit dependence on particle energy, that is, β(s) = β(W(s)).  There are 
some simplifying assumptions that reduce Eqs. (1) to a more manageable set. 
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Figure 8: RF cavity model 
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When the particle velocity β is constant, say through a drift, the wave number k is also constant.  
In this situation the equations in (1) decouple and have a straightforward solution.  Now consider when the 
change in velocity β is small within a gap.  We can approximate the particle phase φ(s) through gap n as 

sks nn +≈ φφ )( where φn is the mid-gap particle phase at n and λβπ nnk /2≡  is the mid-gap wave number 

using the mid-gap velocity nβ  of gap n.  Using cos(φn+ nk s) = cos( nk s)cos(φn) − sin( nk s)sin(φn) for each 
gap n yields the familiar result for the energy gain involving the generalized transit time factors S and T.  
Specifically, the energy gain ΔWn imparted to the beam by cavity gap n is given by the formula [16][24] 

(3)  [ ]nnnnnnn kSkTqZVW φφ sin)(cos)(0 −=Δ  

where V0 is the klystron drive voltage, nk  is the mid-gap wave number of gap n, and φn is the particle 
phase at the gap center.  The quantities Tn(k) and Sn(k) are the transit-time factors for the longitudinal field 
Ez,n(s) generated by gap n.  Mathematically these quantities are the Fourier cosine and sine transforms, 
respectively, of Ez,n(s) ≡ Ez(s−sn).  They are defined as follows: 
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where ln is the length of gap n (this may be somewhat arbitrary depending upon cell geometry).  The 
functions Tn(k) = Tn(β) and Sn(k) = Sn(β) can be numerically computed for particular cavity geometries 
using an electro-dynamics code such as SUPERFISH [3].  They essentially define the dynamics of each gap 
n.   

In the above model the energy increase ΔWn in a beam particle is applied impulsively at each gap 
n.  In the longitudinal phase space (φ,W) any such change in energy ΔW must be accompanied by a 
corresponding change in phase Δφ to preserve the phase space volume (i.e., Liouville’s theorem).  This 
phase change Δφn for gap n is given by  
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According to our initial approximation for ΔWn, the expression for ΔW(s) in the interval s ∈ 
[sn−ln/2,sn+ln/2] is given by 
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Inserting this expression into that for Δφn and integrating by parts yields the following approximation for 
change in phase at the gap center: 
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where A is the atomic mass number of the beam particle, and we have used the chain rule ∂k/∂W = 
(∂k/∂β)(∂β/∂W) and the assumption that Ez,n(sn−ln/2) = Ez,n(sn+ln/2) = 0.  These results are essentially a 
generalization of those seen in references [16] and [24]. 
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A few remarks are in order concerning the longitudinal dynamics model we have just developed.  
For an “ideal gap” and a coordinate system with origin at the gap center, the ideal field Ez(s) is an even 
function of s and thus Sn(k) = 0.   There we recognize Tn(k) as the usual transit time factor for an RF gap 
seen in the literature [24].  Note that we have implicitly assumed that the total axial field Ez(z) can be 
decomposed into components Ez,n(z) generated by each gap n, this decomposition may be somewhat 
arbitrary for some accelerating structures.  We have also said nothing about how to compute any of the 
mid-gap values, such as the }{ nk .  Determining these mid-gap values can be nontrivial and techniques for 
doing so are described in reference [16].  The accuracy of Eqs. (3) and (7) becomes questionable when the 
velocity β does change significantly while the particle traverses the gap, for example, in the case of a low-
energy electron beam.  Clearly then the formulae are most accurate for heavier beam particles.  For lighter 
beam particle species we may require a more accurate description of the longitudinal dynamics, such as that 
presented in reference [19].   

Finally we point out that the maximum energy gain in gap n possible for a given klystron voltage 
V0 is found by maximizing ΔWn with respect to φn.  This maximizing value of φn, say φn,c solves the 
equation ∂ΔWn/∂φn = 0 and is given by 
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Moreover, the energy gains are also functions of the mid-gap wave numbers }{ nk  which are dependent 
upon the klystron phase φ0 and amplitude V0. 

2.2.2 Sequence Attributes 
Just as with the <node> element, a 

<sequence> element has XML attributes.  These 
attributes describe the collective properties of the 
sequence object.  There is one required XML 
attribute of every <sequence> element and three 
optional attributes.   All these attributes are listed 
in Table 12.  The required attribute is id, the 
unique identifier string for the 
<sequence>.  Typically the value of this 
attribute is the accelerator sector that it 
represents, for example DTL1, DTL2, 
CCDTL1, etc.  The optional attributes 
are type, pos, and len.  The type 
attribute is the hardware type identifier 
string; this attribute is similar to the 
type attribute of the <node> element.  If 
present, the type attribute informs XAL 
that the sequence represents a 
recognized composite element and, accordingly, XAL creates a special software object to represent it.  The 
recognized type identifiers are listed in Table 11.  The pos attribute is the offset (in meters) of the 
<sequence> from the beginning of its parent <sequence> object.  If the current <sequence> object is a 
direct child of the top-level <xdxf> element then the pos attribute is the offset of within entire beamline 
described in the optics file.  Thus, the value of pos is the absolute position of the <sequence> along the 
beamline.  As with the <node> element, pos is the position of the center of the <sequence> object.  The len 
attribute represents the total length of the <sequence>.  This attribute together with the pos attribute are 
necessary to describe the drift regions between sequences.  (The length of this drift is given by the 
difference between the pos attribute and the sum of the pos and len attributes of the previous <sequence>.)  
In retrospect these attributes should have been required attributes since they are taken as zero if absent, 
potentially creating a precarious inconsistency.  Consequently one should always provide the pos and len 
attributes regardless.   

XAL Sequence Types 
Type Id XAL Class Hardware Object 

CCL CLL Coupled-cavity linac 
DTLTank DTLTank Drift-tube linac cavity 

Bnch ReBuncher Re-buncher cavity 
RF RfCavity Generic RF Cavity 

SCLCavity SCLcavity Super-conducting linac 

Table 11: sequence type identifier strings 

Attribute Description 
id Unique identifier string 
type Type identifier (see Table 11) 
pos Position within parent (m) 
len Length of sector (m) 

Table 12: <sequence> element attributes 
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2.2.3 Sequence Attribute Buckets 
Just as with <node> elements, <sequence> 

elements may have attribute buckets, which are  
listed in their <attributes> child section.  Valid 
attribute buckets for a <sequence> object include 
the <alignment> bucket, which is the same as that 
for a <node> element listed in Table 4.  Additional attribute buckets are the <sequence> bucket (an 
unfortunate choice in nomenclature) and the <rfcavity> bucket.  The <sequence> attribute bucket is quite 
simple with only one attribute, predecessors, shown in Table 13.  This value of this attribute is a space de-
limited list of <sequence> id’s which may precede the current <sequence> object in the beamline.  In this 
manner, XAL knows that the current sequence may be placed after these predecessors to form viable beam 
paths.  Referring to Excerpt 4 we see that the <sequence> attribute bucket has its predecessors attribute 
set to “null”.  This situation indicates that the sequence has no other sequences preceding it, that is, it is the 
beginning of the beamline.  The last possible attribute bucket, <rfcavity>, is significantly more complex.   

A listing of all possible parameters of 
an <rfcavity> attribute bucket is given in 
Table 14.  Clearly this attribute bucket applies 
only to <sequence> objects representing some 
type of accelerating RF structure.  This 
structure is assumed to be composed of RF 
gaps, for which many of the <rfcavity> 
parameters apply.  The first three parameters 
are rather straightforward, amp, phase, and 
freq.  These are all design parameters for the 
cavity whose values indicate its drive 
amplitude (unfortunately in kV rather than 
Volts), its drive phase (in degrees), and its 
resonant frequency (unfortunately in MHz 
rather than Hz), respectively.  The next two 
parameters, ampFactor and phaseOffset, are 
conversion parameters from actual values to 
process variable (PV) values.  Specifically, the 
parameter ampFactor is the ratio of the true RF 
amplitude seen at the cavity input (i.e., V0) 
versus the values of the amplitude process 
variables.  For the RfCavity object (<sequence> type value “RF”) these process variables are those 
identified with the channel handles cavAmpAvg and cavAmpSet (see Table 23 of Appendix B).  The 
phaseOffset attribute is the difference between the phase at the entrance of the cavity (i.e., φ0) and the 
klystron phase process variables.  These process variables are identified by the XAL channel handles 
cavPhaseAvg and cavPhaseSet (see Table 23).  Thus, ampFactor and phaseOffset are correction factors 
which may be utilized in case the amplitude and phase process variables differ from that seen at the cavity. 

The next eight parameters of the <rfcavity> attribute bucket all contain modeling parameters 
characterizing the transit time functions T(β) and S(β), and their derivatives T’(β) and S’(β).  Note that 
XAL takes the transit time function to be functions of normalized particle velocity β, rather than the wave 
number k as defined in Eqs. (4).  This situation is simply more convenient, to convert from T(k) and S(k) to 
T(β) and S(β) we simply substitute Eq. (2) for k.  Within the XAL model, each of the functions T(β), S(β), 
T’(β) and S’(β) are expanded as quadratic functions of β.  Thus, the attributes TTFCoefs, STFCoefs, 
TTFPrimeCoefs, STFPrimeCoefs contain the coefficients of the expansions for T(β), S(β), T’(β) and S’(β), 
respectively.  For example, given the entry TTFCoefs=”a b c” where a, b, c are some real-number formats, 
then we take 

(9)  2)( βββ cbaT ++= , 

likewise with all the other transit time functions.  The attributes TTF_endCoefs, TTFPrime_EndCoefs, 
STF_endCoefs, and STFPrime_endCoefs appear in case the transit time functions for the end cells in the RF 

Attribute Description 
predecessors List of valid sequence id’s 

Table 13: <sequence> attribute bucket parameters 

Attribute Description 
amp Design amplitude (kV) 
phase Design phase (degrees) 
freq Resonant frequency (MHz) 

ampFactor Ratio of True/PV amplitude 
phaseOffset Difference True−PV phase 
TTFCoefs Even field TTF expansion 

TTFPrimeCoefs Even field TTF’ expansion 
STFCoefs Odd field TTF expansion 

STFPrimeCoefs Odd field TTF’ expansion 
TTF_endCoefs End cell expansion 

TTFPrime_EndCoefs End cell expansion 
STF_endCoefs End cell expansion 

STFPrime_endCoefs End cell expansion 
structureMode 0 or π mode (0, 1) 

qLoaded Quality factor under load 
structureTTF TTF used in LLRF 

Table 14: <rfcavity> attribute bucket parameters 
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cavity are different from those of all the initial cavity cells.  If the cavity has identical transit time functions 
for each gap then these attributes values should be the same as those of their respective primary cell 
attributes. 

The final three parameters of the <rfcavity> attribute bucket are structureMode, qLoaded, and 
structureTTF.  The structureMode attribute indicates whether the cavity is being operated in normal 
mode or π mode (where the longitudinal field Ez changes sign at each cell boundary).  A value of “0” 
indicates normal mode and a value of “1” indicated π mode.  The value of qLoaded is the fully loaded 
quality factor of the cavity, that is, the quality factor including all external contributions including the 
beam.  The final attribute, structureTTF, is the transit time factor used by the low-level RF system. 

2.2.4 Sequence Connectivity: The <channelsuite> Element Revisited 
Analogous to <node> elements, <sequence> elements may also have a <channelsuite> section. 

As with the <node> element, the <channelsuite> element contains a listing of all the signals associated 
with that <sequence> as a composite accelerator component.  The syntax and format of a <channelsuite> 
element is identical to that of a <node>.  Specifically, a <channelsuite> contains a list of <channel> 
elements, each of which describes a process variable connected to the parent <sequence>.  Again, the 
attributes of a <channel> are listed in Table 10 and their descriptions, along with a description of 
<channelsuite>, are presented in Section 2.1.3.  Typically, the process variables described by the 
<channel> entries of a <sequence> are those for an RF cavity, since sequences most often describe RF 
cavities.  Thus, the channel handles for the RfCavity object in Table 23, Appendix B, are the one most 
often seen.  This is the situation seen in Excerpt 4. 

2.3 Combination Sequences: The <comboseq> Element 
The initial section of the XAL optics file 

usually contains a set of <comboseq> blocks, each 
containing a list of <sequence> elements.  This 
feature is primarily a convenience to XAL users 
where <sequence> objects may be grouped 
together to form larger composite lattice objects 
making sense in the context of the current 
accelerator complex.  For example, in Excerpt 2 we 
see a <comboseq> entry describing the aggregation of 
seven <sequence> objects consisting of a Medium 
Energy Beam Transport (MEBT) plus six Drift-Tube 
Linac (DTL) tanks.  The composite object is then 
called “MEBT-DTL”.  There it is assumed that the 
“MEBT-DTL” composite is frequently analyzed in 
this configuration.   

As mentioned above, a <comboseq> element 
contains a consecutive listing of <sequence> 
elements.   The only attribute of a <comboseq> 
element is id, as shown in Table 15.  The value of 
id is the unique identifier string for the described 
combination sequence.  The child elements of a 
combination sequence, that is <sequence> elements, 
also have only attribute, also called id.  The value of 
id in this case refers to the unique sequence 
identifier of the sequence within the combination 
sequence.  

2.3.1 Working with Sequences and 
Combinations Sequences 
Figure 9 shows an example XAL 

application built from the XAL Application  
Figure 9: example application menu with combination sequences

Attribute Description 
id identifier of combination sequence 

Table 15: <comboseq> element attributes  
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Framework.  The Application Framework provides the Accelerator menu from which any of the 
sequences or combination sequences described in the optics file can be selected.  (The Accelerator menu 
also enables you to load the main XAL file describing the accelerator complex.)  As seen in Figure 9, the 
Accelerator/Sequences selection brings up a child menu of all the sequences and combination sequences 
described in the optics file.  The user need only select the accelerator section that he or she wants to analyze.  
Also shown in the figure is the option of creating new combination sequences, which can then be analyzed, 
as well as those stored in the optics file for later use. 

2.4 Power Supplies: The <powersupplies> element 
The optics file contains a single instance of the <powersupplies> element, although this single 

element is typically a large listing.  This element usually occurs at the end of the optics file, after all the 
<sequence> elements are defined.  Located under the <powersupplies> element is a listing of all the power 
supplies used in the accelerator description.  The direct children of <powersupplies> are <ps> elements, 
which describe the actual power supplies.  Each <ps> element contains a <channelsuite> entry listing all 
the channels connected to that supply.  An example of the this syntax for listing the power supplies of an 
accelerator is shown in Excerpt 5. 

Although the <powersupplies> entry is not defined in the xdxf.dtd file, it is important that this 
information be included in the optics file, and with the syntax shown in Excerpt 5.  This mechanism is how 
XAL binds beamline devices in the <sequence> entries to their power supply process variables.  As 
mentioned in Section 2.1.2 this is also the method for defining bulk power supplies for multiple devices, 
such as that for quadrupole magnets.  The power supply is defined once in the <powersupplies> section, 
and the magnets each reference it using the <ps> element within the magnet <node> definition. 

The <powersupplies> element itself has no 
XML attributes.  It simply marks the listing of power 
supply entries.  Different from its context under a 
<node> element (see Section 2.1.2), the <ps> element 
here has two attributes, id and type.  The value of id 
is the unique identifier string of the power supply 
while the value of type is currently either “main” or 
“trim”.  If type equals “main” then the software object representing it in XAL is of Java class type 
MainMagnetSupply.  If type equals “trim” then the object representing the supply is of class type 
MagnetTrimSupply.  The remaining part of the <ps> entry describes all the process variables connected to 
the power supply.  As shown in Excerpt 5 this action is accomplished with a single <channelsuite> 
element.  The <channelsuite> element here is the same as that for a <node> element described in Section 

<powersupplies> 
  <ps type="main" id="MEBT_Mag:PS_DC"> 
    <channelsuite name="pssuite"> 
      <channel handle="I" signal="MEBT_Mag:PS_DC:I"/> 
      <channel handle="I_Set" signal="MEBT_Mag:PS_DC:I_Set"/> 
      <channel handle="fieldSet" signal="MEBT_Mag:PS_DC:B_Set"/> 
      <channel handle="psFieldRB" signal="MEBT_Mag:PS_DC:B"/> 
      <channel handle="cycleState" signal="MEBT_Mag:PS_DC:cycleState"/> 
      <channel handle="cycleEnable" signal="MEBT_Mag:PS_DC:cycEnable"/> 
    </channelsuite> 
  </ps> 
  <ps type="trim" id="CCL_Mag:ShntC_QTV309"> 
    <channelsuite name="pssuite"> 
      <channel handle="trimSet" signal="CCL_Mag:ShntC_QTV309:B_Set"/> 
      <channel handle="trimRB" signal="CCL_Mag:ShntC_QTV309:B"/> 
      <channel handle="trimI_Set" signal="CCL_Mag:ShntC_QTV309:I_Set"/> 
      <channel handle="trimI" signal="CCL_Mag:ShntC_QTV309:I"/> 
      <channel handle="cycleState" signal="CCL_Mag:ShntC_QTV309:cycleState"/> 
      </channelsuite> 
    </ps> 

… 
</powersupplies> 
 

Excerpt 5: example <powersupplies> entry in XAL optics file 

Attribute Description 
id UID string of power supply 
type supply type (“main” or “trim”) 

Table 16: <ps> element attributes under <powersupplies>
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2.1.3.  The channel suite contains a listing of each <channel> object connected to the power supply, each 
channel being described by its XAL handle and the signal name of the process variable.  The channel 
handles used here are typically those of the last three entries of Table 23, Appendix B, specifically, the 
classes MagnetPowerSupply, MainMagnetSupply, and MagnetTrimSuppply. 

3 Timing Process Variables: The <timing_source> File 
XAL supports the 

inclusion of several high-level 
timing signals that the 
application developer can 
monitor.   A separate XML 
file, called the timing file, 
defines all the timing signals 
available to an XAL developer.  
As seen in Excerpt 1, this file 
is tagged <timing_source> in 
the main XAL configuration 
file main.xal.  The url 
attribute of the 
<timing_source> element 
points to the timing file.  
Although it is likely that these 
timing signals seldom will be 
used, they are available and we 
outline the configuration 
method.  This configuration 
mechanism is much simpler 
than that for the optics 
configuration; it basically 

Handle Description 
trigger Trigger flag – 0 triggered, 1 

counting 
mode Trigger mode – 0 continuous, 1 

single 
countDown Number of beam pulses 
count Pulse number during countdown 
repRate Overall repetition rate 
beamOnEvent ?? 
beamOnEventCount Beam on event counter 
diagnosticDemandEvent ?? 
diagnosticDemandEventCount Diagnostic demand event counter 
slowDiagnosticEvent Slow (1 Hz) diagnostic event 
slowDiagnosticEventCount Slow diagnostic event counter 
fastDiagnosticEvent Fast (6 Hz) diagnostic event 
fastDiagnosticEventCount Fast diagnostic event counter 
ringFrequency Readback of ring frequency (MHz) 
machineMode Machine mode ? 

Table 17: timing channel handles 

<?xml version = '1.0' encoding = 'UTF-8'?> 
<!DOCTYPE timing SYSTEM "xdxf.dtd"> 
<timing> 
    <channelsuite name="timingsuite"> 
        <!-- beam trigger PV: 0=Trigger, 1=Counting --> 
 <channel handle="trigger" signal="ICS_Tim:Gate_BeamOn:SSTrigger"/> 
 <!-- beam trigger mode PV: 0=Continuous, 1=Single-shot --> 
 <channel handle="mode" signal="ICS_Tim:Gate_BeamOn:SSMode"/> 
 <!-- specify how many beam pulse(s) --> 
 <channel handle="countDown" signal="ICS_Tim:Gate_BeamOn:SSCountDown"/> 
 <!-- readback while it's counting down --> 
 <channel handle="count" signal="ICS_Tim:Gate_BeamOn:SSCount"/> 
 <!-- readback of overall rep rate --> 
 <channel handle="repRate" signal="ICS_Tim:Gate_BeamOn:RR"/> 
 <!-- beam on event --> 
 <channel handle="beamOnEvent" signal="ICS_Tim:Util:event36"/> 
 <!-- beam on event counter --> 
 <channel handle="beamOnEventCount" signal="ICS_Tim:Util:event36Count"/> 
 <!-- diagnostic demand event --> 
 <channel handle="diagnosticDemandEvent" signal="ICS_Tim:Util:event45"/> 
 <!-- slow (1 Hz) diagnostic event --> 
 <channel handle="slowDiagnosticEvent" signal="ICS_Tim:Util:event46"/> 
 <!-- fast (6 Hz) diagnostic event --> 
 <channel handle="fastDiagnosticEvent" signal="ICS_Tim:Util:event47"/> 
 <!-- Machine mode --> 
 <channel handle="machineMode" signal="ICS_Tim:MPS_Mode:MachMode"/> 
    </channelsuite> 
</timing> 

Excerpt 6: XAL Timing File 
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consists of a single <channelsuite> entry. 

An example timing file is shown in Excerpt 6.  The first two lines are the standard XML 
statements designating the version, character encoding, name of the document, and the DTD file associated 
with the document (which, again, is xdxf.dtd).  On the next line starts the root element, <timing>.  There 
are no attributes to this element.  It simply contains one child element, a <channelsuite> element, listing 
all the timing channels of the accelerator.  The <channelsuite> element is used here just as it is in Section 
2.1.3.  However, here we are directly populating an instance of the Java class TimingCenter with the listed 
Channel objects.  As mentioned in Section 1.4, the TimingCenter object is attached to the main 
Accelerator object.  Thus, to acquire a timing signal, the developer must first reference the TimingCenter 
through the Accelerator object, then work with the appropriate channel handle.   

The supported channel handles are defined in the TimingCenter class.  Table 17 lists all the 
channel handles currently supported by the TimingCenter class along with a description of each.  However, 
since we work directly with Channel objects in this case, it is possible to define your own channel handle 
within the timing file and request it directly with the method TimingCenter.getChannel(String 
channelHandle). 

4 Auxiliary Data: Using the <tablegroup_source> Element 
Most of the high-level machine hardware in 

an accelerator system can be described in the XAL 
optics file.  However, not all information required by 
XAL is contained in this file.  A prime example is the 
beam data that XAL needs to describe and simulate 
the beam.  These data are not included in the optics 
file because they do not describe the machine; the optics file is formatted strictly as a machine description 
mechanism.  Any data not supported by the XAL optics file may be included using a separate mechanism 
called a table group.   

A table group allows arbitrary data to be made available to application users and developers within 
the XAL framework.  It is essentially a miniature database, the data itself being contained in tables within 
an XML file.  The structure of this data file is described in Section 4.1.  The location of the data file is 
identified in the main XAL configuration file (main.xal) using a <tablegroup_source> element entry.  
Such an entry is demonstrated in Excerpt 1 for the case of the modeling parameters.  In the excerpt we see 
the two attributes of the <tablegroup_source> entry, name and url, which are listed in Table 18 with a 
description.  The name attribute contains the unique string identifier of the table group.  This identifier 
string is used to reference the data tables forming the table group.  XAL has a special container called an 
edit context which contains all the table groups listed in the main.xal file (discussed below).  The value of 
the url attribute is the URL of the table group’s data file.  The data within this file is loaded and converted 
to data tables when the XAL configuration file is read.  Referring to Excerpt 1, the URL of the table group 
named “modelparams” is model.param, which is assumed to be in the same directory as main.xal. 

The edit context object referred to above is of Java type EditContext.  Within XAL, it is a 
singleton class, meaning there is only one EditContext instance within the entire XAL framework.  The 
edit context singleton is accessed from the main Accelerator object with a call to the method 
Accelerator#editContext().  From there, individual table groups may be retrieved with the accessor 
EditContext#getTablesForGroup(String name).  Programmatically, a table group is actually a Java 
Collection of DataTable objects.  Thus, the primary objects of a table group are DataTable instances.  
Analogous to tables in a database, each DataTable is composed of a set of related data records.  However, 
unlike a database, application developers may register with the edit context to receive event notification 
whenever data in the tables, or the tables themselves, are changed.  The details of this mechanism are, 
however, beyond our current scope. 

4.1 Basic Form of a <tablegroup> Element 
For any table group specified by a <tablegroup_source> element, the data file is an XML file 

with the document type definition file tablegroup.dtd.  The contents of tablegroup.dtd are listed in 

Attribute Description 
name ID within accelerator EditContext 
url URL of XML data file  
Table 18: <tablegroup_source> element attributes
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Appendix C.  Each table group file consists of one <tablegroup> element with one or more <table> 
children.  There are no restrictions on the number of <table> elements within a table group file. 

Excerpt 7 lists a simple table group 
data file.  The first two lines are boiler plate 
XML as seen before, the second line 
indicating that the DTD file is 
tablegroup.dtd.  The third line is the 
singleton <tablegroup> element entry.  
Within this particularly simple table group, there is only one <table> entry (recall that there can be many).  
The purpose of this particular table is to list the properties of several different particles.  Each <table> 
element has two attributes: name, which is required, and recordClass, which is optional.  These attributes 
are listed in Table 19 along with brief descriptions.  The name attribute contains the table’s unique identifier 
string.  This identifier facilitates access to the particular data table within the table group.  The 
recordClass attribute specifies the Java class type of the records within the data table.  In Excerpt 7 we see 
that the value there is GenericRecord, which is, in fact, its default value.  The Java class GenericRecord is 
suitable for most all table records within a table and it is unlikely that one would need to implement a 
specialized class here.  Thus, one seldom sees the recordClass attribute actually specified in the <table> 
element entry. 

As seen in the table group DTD file of Appendix C and in Excerpt 7, there are two types of child 
elements for a <table> entry, <schema> and <record>.  According to the DTD specification, there is 
exactly one <schema> element, which then may be following by any number of <record> elements.  The 
<schema> element specifies the “schema” of the table, specifically, the structure of the data records 
contained in the current table.  The <record> elements contain the actual data of the data table.  There are 
no child elements of a <record> element, only attributes.  The attributes of the <record> element are 
described in the table’s <schema> entry, and each represents a field of the data record. 

A table’s <schema> element has no XML 
attributes, only child elements which are all of type 
<attribute>.  This set of <attribute> elements 
describes completely the structure of the data 
records within the table.  Specifically, each 
<attribute> entry identifies a field in the data 
record.  The <attribute> element has no children, 
only attributes.  The four (XML) attributes of an 
<attribute> element are listed in Table 20.  They are name, type, isPrimaryKey, and defaultValue.  All 
attributes are required except the defaultValue attribute, which may be omitted.  The name attribute 
contains the name of the field in the data record.  The type attribute specifies the Java class type for the 
field, that is, how its value is stored programmatically within the record.  This specification is necessary 
because attributes of XML elements are all stored internally as strings and it is necessary to convert the 
string values to their proper representation within XAL.  The attribute isPrimaryKey is a Boolean flag 
(value “true” or “false”) specifying whether or not the field is a primary key of the record.  

<?xml version = '1.0' encoding = 'UTF-8'?> 
<!DOCTYPE particles SYSTEM "tablegroup.dtd"> 
<tablegroup> 
    <table name="species" recordClass="gov.sns.tools.data.GenericRecord"> 
        <schema> 
            <attribute type="java.lang.String" name="name" isPrimaryKey="true"/> 
            <attribute type="java.lang.Double" name="charge" isPrimaryKey="false"/> 
            <attribute type="java.lang.Double" name="mass" isPrimaryKey="false"/> 
        </schema> 
        <record charge="-1.0" name="ELECTRON" mass="5110000.0"/> 
        <record charge="1.0" name="PROTON" mass="9.38272E8"/> 
        <record charge="-1.0" name="HMINUS" mass="9.393014E8"/> 
    </table> 
</tablegroup> 

Excerpt 7:  example table group data file 

Attribute Description 
name Table ID within accelerator EditContext

recordClass Java class of data record 
Table 19: <table> element attributes 

Attribute Description 
name Name of the record field 
type Java class type of record field 

isPrimaryKey Record field’s primary key flag 
defaultValue Default value of the record field 

Table 20: <attribute> element attributes 
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Programmatically, table records are retrieved by the values of their primary keys.  Thus, to be able to select 
a particular record in a table, one must know the value for a primary key within the record.  Each record 
must then contain at least one primary key.  Thus, at least one <attribute> element of the parent <schema> 
must have its isPrimaryKey attribute set to “true”.  This requirement follows because the records of each 
table are indexed according to the primary key values (so that they can be retrieved as such).  There may be 
multiple primary keys within a record; we require that there is at least one.  The final attribute, 
defaultValue, is the default value of the field.  The record field will take on this value if not explicitly 
specified in the table records.  Although it is impossible to enforce this condition with a DTD, the only 
required attribute of a <record> entry is the primary key; this value must be present or XAL will throw an 
exception.  All other attributes are optional.  Consequently, if a <record> attribute (field) is omitted, then 
its value is given by the value of defaultValue described in the <schema> definition. 

Referring back to Excerpt 7, we see that the table with name “species” has a schema specifying 
three fields for each record of the table, name, charge, and mass.  The name field is of Java type String, 
while the charge and mass are both of Java type Double. The name field is the primary key of the table and, 
thus, the table records must be retrieved with the value of this field.  After the <schema> entry in the table, 
we find the actual records of the table.  In this case of Excerpt 7 there are three records, one named 
“ELECTRON” representing an electron, one named “PROTON” representing a proton, and the last named 
“HMINUS” representing an H− ion.  The mass of each particle is in electron-Volts (i.e., the rest energy of 
the particle) while the charge is normalized to the unit charge e ≈ 1.602×10−19.  Since the data stored in 
table groups is user data, he or she may use any units or table formatting that seems appropriate, so long as 
it conforms to the schema of a table group. 

4.2 The Model Parameters <tablegroup> Entry 
There is, at present, one table group that is particular to XAL, that is, it must take a particular 

format.  This special table group is that containing the modeling parameters for a beam under simulation by 
the XAL online model [2].  An example of this table group is shown in Appendix D, it is that for the SNS 
machine at Oak Ridge, Tennessee.  Note that there are five separate tables in this table group, they have the 
names “species”, “beam”, “adaptivetracker”, “twiss”, and “location”.  Although the table group of 
Appendix D is an example, all model parameter table groups must follow the same schema exactly, only 
the data within the table records may differ.  That is, Appendix D is essentially a template for all model 
parameter table groups. 

4.2.1 The Species Table 
Excerpt 8 lists the schema of the XAL model-parameters table group.  Basically, it is Appendix D 

without the <record> element entries.  As mentioned above, there are five tables.  The first of these, 
“species”, is the same as that discussed in the preceding section.  The table describes all the particle 
species composing the beam within the accelerator.  Each species is given a name, that is, the value of the 
name attribute, for which it can be referenced in the following tables.  The name field is the primary key of 
the table and, thus, the table records must be retrieved with the value of this field.  The value of the mass 
attribute is actually the rest energy Er of the particle where Er = m/c2 (m being particle mass).  Thus, this 
value should be in electron-Volts.  The charge attribute is the particle charge normalized to the unit charge 
e ≈ 1.602×10−19.  At present, the “species” table records are referenced only within one other table, the 
“location” table.   

4.2.2 The Beam Table 
The next table, called “beam”, describes the collective properties of the particle beam being 

modeled.  Each record within the table has three fields, name, I, and Q.  The name attribute is the primary 
key and, consequently, the mechanism by which the table records are reference in the other tables.  The 
value of the name field is user defined; it should be a unique identifier string which makes sense in the 
simulation context.  The I and Q fields are the beam current (in Amperes) and beam charge (in Coulombs), 
respectively.  In an RF cavity these fields are related by the formula 

(10) fQI = , 
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where f is the frequency (in Hertz) of the RF power.  Thus, for each separate beam, one must prescribe a 
name (identifier) then the bunch charge and beam current.  Currently, there is only one beam record used, it 
specifies the beam throughout the entire machine. 

4.2.3 The Adaptive Tracker Table 
The third table, named “adaptivetracker”, contains numerical tuning parameters for the space 

charge algorithm used in the RMS envelope simulation.  The XAL online model uses an adaptive 
integration procedure for the simulation.  Consequently, there are several numerical parameters that can be 
used to fine tune this integration process.  Records in this table contain the data fields name, errortol, 
initstep, maxstep, slack, maxiter, norm, and order.  Below we list each parameter with a description of 
its function.  For each parameter, we also offer default values which appear to provide reasonable 
performance in most cases. 

<tablegroup> 
    <table name="species"> 
        <schema> 
            <attribute isPrimaryKey="true" name="name" type="java.lang.String"/> 
            <attribute isPrimaryKey="false" name="mass" type="java.lang.Double"/> 
            <attribute isPrimaryKey="false" name="charge" type="java.lang.Double"/> 
        </schema> 
    </table> 
  
    <table name="beam"> 
        <schema> 
            <attribute isPrimaryKey="true" name="name" type="java.lang.String"/> 
            <attribute isPrimaryKey="false" name="I" type="java.lang.Double"/> 
            <attribute isPrimaryKey="false" name="Q" type="java.lang.Double"/> 
        </schema> 
    </table> 
 
    <table name="adaptivetracker"> 
        <schema> 
            <attribute isPrimaryKey="true" name="name" type="java.lang.String"/> 
            <attribute isPrimaryKey="false" name="errortol" type="java.lang.Double" defaultValue="1.0E-3"/> 
            <attribute isPrimaryKey="false" name="initstep" type="java.lang.Double" defaultValue="0.01"/> 
            <attribute isPrimaryKey="false" name="maxstep" type="java.lang.Double" defaultValue="0.0"/> 
            <attribute isPrimaryKey="false" name="norm" type="java.lang.Integer" defaultValue="0"/> 
            <attribute isPrimaryKey="false" name="order" type="java.lang.Integer" defaultValue="2"/> 
            <attribute isPrimaryKey="false" name="slack" type="java.lang.Double" defaultValue="0.05"/> 
            <attribute isPrimaryKey="false" name="maxiter" type="java.lang.Integer" defaultValue="100"/> 
       </schema> 
    </table> 
  
    <table name="twiss"> 
        <schema> 
            <attribute isPrimaryKey="true" name="name" type="java.lang.String"/> 
            <attribute isPrimaryKey="true" name="coordinate" type="java.lang.String"/> 
            <attribute isPrimaryKey="false" name="alpha" type="java.lang.Double"/> 
            <attribute isPrimaryKey="false" name="beta" type="java.lang.Double"/> 
            <attribute isPrimaryKey="false" name="emittance" type="java.lang.Double"/> 
        </schema> 
    </table> 
  
    <table name="location"> 
        <schema> 
            <attribute isPrimaryKey="true" name="name" type="java.lang.String"/> 
            <attribute isPrimaryKey="false" name="species" type="java.lang.String"/> 
            <attribute isPrimaryKey="false" name="W" type="java.lang.Double"/> 
            <attribute isPrimaryKey="false" name="elem" type="java.lang.String" defaultValue=""/> 
            <attribute isPrimaryKey="false" name="s" type="java.lang.Double" defaultValue="0"/> 
            <attribute isPrimaryKey="false" name="t" type="java.lang.Double" defaultValue="0"/> 
        </schema> 
    </table> 
</tablegroup 
 

Excerpt 8: model parameters table group schema 
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o name: This is the unique identifier of the data record, and the primary key.  One should set this attribute 
value to the <sequence> name of the beamline where the data record applies.  That is, the tuning 
parameter values in the current record will be used for simulation in the given beamline described by 
the sequence id. 

o errortol: The integration algorithm is designed to maintain a specific accuracy in the computed 
solution.  Moreover, it is designed to keep the integration step size h as large as possible such that ||σsim 
− σsoln|| ≤ errortol at each step, where σsim is the simulated moment matrix, σsoln is the “exact” 
moment matrix, and ||⋅|| is a suitable matrix norm (see norm below).  This technique provides the fastest 
solution time while maintaining the given error tolerance.  A reasonable default value of errortol is 
10−5. 

o initstep: The initial step size (in meters) used to start the adaptive integration algorithm.  The 
integration algorithm continually adjusts the actually step size h to maintain the error tolerance 
specified by the parameter errortol.  Choosing an initial step too small will marginally slow the 
solution time, while choosing a value too large will not significantly affect the solution time.  A 
reasonable default value of initstep is 0.01 (1 cm). 

o maxstep: Maximum allowable step size (in meters).  For whatever reason, it is possible for the user to 
specify a maximum step size for the adaptive stepping algorithm. This value will prevent the algorithm 
from taking any step sizes h greater than maxstep.  To turn off this feature set maxstep = “0”.  Under 
normal conditions this feature is not used, that is, the default value of maxstep is 0 (no maximum step 
size). 

o slack: Slack tolerance parameter.  For each integration step in the simulation, a new value of the step 
size h’ is computed for the next step.  If h’ is smaller than the previous step h, the current integration 
step must be rolled back and the solution recomputed with new step size h’ in order to maintain the 
solution tolerance errortol.  However, if h’ is only marginally smaller than h (perhaps due to noise or 
rounding errors), this backtracking can be a significant waste of CPU time.  Thus, we only change the 
integration step size if |h’−h|/h > slack.  (The reason for the absolute value is that we also must re-
compute the element sub-transfer matrix exp(hA) if h is changed in either direction.)  Thus, slack 
provides some backlash before the adaptive stepping is triggered.  Consequently, slack can save 
significant CPU time, however, choosing a value to large will compromise the accuracy of the solution 
and the solution tolerance errortol.  A reasonable default value of slack is 5% (slack=”0.05”). 

o maxiter: Maximum number if integration steps allowed through a beamline element.  Because of the 
adaptive stepping procedure, it is possible that the algorithm may stall, choosing smaller and smaller 
step sizes h.  This is a pathological situation that may occur, for example, if the errortol parameter is 
set too small.  To prevent the simulation from entering this situation, the maxiter parameter specifies 
the maximum number if integration steps the algorithm will allow through any beamline element 
before stopping and throwing an exception.  A reasonable value for maxiter is 100. 

o norm:  The matrix norm used in the adaptive stepping algorithm.  There are three possible values for 
norm, which are the three most common Lesbeque norms: “0” indicates the l∞ norm where the matrix 
norm is taken as the largest matrix element, “1” indicates the l1 norm where the norm is the summation 
of the absolute value of all the matrix elements, and “2” indicates the l2 norm where the norm is the 
square-root of the sum of matrix element squares.  Any of the three norms work equivalently, the most 
popular seems to be the l∞ norm (i.e., norm=”0”). 

o order: The order of integration.  The integration algorithm will support either a first-order integration 
scheme (i.e., Euler integration) or a second-order method.  The integration order is specified with an 
order value of 1 or 2, respectively.  We do not gain much by integrating to higher orders, due to the 
way space charge effects are handled.  It appears best to use the second-order integration scheme as a 
default, that is, order=”2”. 

4.2.4 The Twiss Table 
The next table in the model-parameters table group is called “twiss”.  This table contains the 

Twiss, or Courant-Snyder, parameters of the beam at various locations along the beamline.  The fields of 
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each record are name, coordinate, alpha, beta, and emittance.  Clearly, the alpha, beta, and emittance 
fields are the Courant-Snyder parameters for the beam ellipse in a single phase plane.  The units for beta 
are meters/radian while alpha is unitless.  The emittance field expects the RMS emittance for the beam in 
units of meter-radians (even for longitudinal emittances).  The name field is similar to that of the previous 
table.  Its value is the identifier string for the record and, once again, we set the value of this field to the 
name of the <sequence> describing the machine sector where this set of Courant-Snyder applies.  However, 
unlike the previous table, this value need not be unique.  In fact, there should be three records having the 
same value for the name field (see below).  The coordinate field specifies the phase plane to which the 
Courant-Snyder parameters belong.  For the model parameters table group to work properly, one must set 
the value of this field to either “x”, “y”, or “z”, specifying the x, y, and z phase planes, respectively.   

It is important to note here that the “twiss” table has two primary key fields.  Specifically, name 
and coordinate are both primary keys.  Thus, each record is indexed according to the value of both the 
name and coordinate fields.  To expand on this condition, the name attribute specifies the <sequence> 
where the Courant-Snyder parameters apply, specifically, the entrance to that <sequence>.  The 
coordinate field then specifies the phase plane for the particular Courant-Snyder parameters.  Thus, for 
each <sequence> where one wishes to begin a simulation, there must be three records whose name field has 
the value of the <sequence> identifier, each of these records specifying the Courant-Snyder parameters for 
a separate phase plane (x, y, or z).  In this manner each record can be uniquely identified by the values of 
the two primary keys. 

4.2.5 The Location Table 
The last table is the “location” table.  This table correlates all of the preceding tables.  It tells 

XAL which beam to use at each <sequence> location within the beamline.  Currently, the table is 
somewhat incomplete, in that it truly only specifies which particle species to use (i.e., records from the 
“species” table), along with several other parameters.  In the future it may be necessary to include records 
from the “beam” table as well. 

There are six fields in each record of the “location” table, name, species, W, elem, s, and t.  Once 
again, the name field specifies the <sequence> to which the record applies, that is, the value of the name 
field is the <sequence> identifier string.  Since there is only one primary key, this value must be unique 
within the table.  The species field indicates which particle species, from the “species” table, to use with 
the <sequence>.  Thus, the value of the species field is the unique identifier string of the desired species 
record in the “species” table.  The W field specifies the beam kinetic energy at the entrance to the 
<sequence> in electron-Volts.  The elem field, if included, indicates that the simulation should begin at that 
particular element within the sequence, rather than the sequence entrance.  Thus, the value of the elem field 
should be the unique identifier string of the <node> entry where the simulation is to begin.  The s field 
specifies the starting value of the path length parameter at the sequence entrance.  It has a default value of 
zero, which typically need not be changed for most all simulations.  The final field, t, specifies the starting 
time of the simulation.  Once again this field has a default value of zero which is fine for typical simulation 
requirements. 

5 Particle Beam Representation: Probe Files 
As indicated in the introduction, there is one additional data file supported by XAL, the probe file.  

Although its practical use has been lessened by the model-parameters table group discussed in Section 4.2, 
the probe file continues to be supported.  This file is an XML file used only by the XAL online model, it is 
typically small.  It describes the particle beam, or rather aspects thereof, to be simulated.  The XAL online 
model supports several different types of beam simulation, for example, single-particle, RMS envelope, and 
transfer map generation.  Each of these different types of simulation requires differing data describing the 
particular aspects of the beam we are modeling.  Thus, there is no rigid format for the probe file and, 
consequently, no DTD specification.  There is a general format where the particulars depend upon the type 
of simulation desired by the user.  We cover this general format below.   

Because the probe file is currently being deprecated by the model-parameters file, our presentation 
is more laconic then for the previous files.  However, it is important to cover the basic probe file format 
because the model-parameters table group, in its current form, is formatted primarily to support single-
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particle simulation and RMS envelope simulation.  Thus, at least at present, it may even be necessary to use 
a probe file for a different simulation type.   

To understand the basic structure of a probe file it is helpful to appreciate the basic architecture of 
the XAL online model (for a more detailed exposition see [1] and [2]).  The online model is built upon the 
Element/Algorithm/Probe design pattern conceived by Malitsky and Talman [18].  In this framework, the 
particle beam simulator is composed of three separate software components, 1) the Element representing 
the machine hardware, 2) the Algorithm encapsulating the numerical simulation technique, and 3) the 
Probe which represents some aspect or aspects of the beam under study.  In this manner, the same machine 
representation can support multiple simulation strategies.  This fact alone is a tremendous savings in 
development effort, since such a large part of the simulation is devoted toward proper representation of the 
machine hardware.  The Element, or machine description, is taken from the optics file which has already 
occupied most of this presentation.  The Algorithm and Probe are identified by the probe file.  Specifically, 
the probe file tells the XAL online model which type of beam simulation to perform and which algorithm 
to use during the simulation. 

5.1 The <probe> Element 
After the initial perfunctory XML entries, 

a probe file begins with the singleton <probe> 
element.  This is the root of the probe file.  This 
situation is shown in the example probe file of 
Excerpt 9.  There are four possible attributes for a 
<probe> element, type, id, time, and author; 
only the type attribute is required.  These 
attributes are listed in Table 21.  The type 
attribute is the Java class type (full package name) 
of the probe object.  This attribute is required so that XAL knows to instantiate the correct probe type.  
Referring to Excerpt 9 we see that the value there is “gov.sns.xal.model.probe.EnvelopeProbe”, which 
is the class type representing the RMS envelopes of a particle beam.  The id attribute is the identifier string 
of the probe instance within XAL.  This identifier does not need to be unique; it is simply a convenience for 
the user in order to refer to a specific probe object.  The time attribute is a time stamp for the probe file, to 
maintain versioning if desired.  The author attribute facilitates a reference to the file’s author for 
documentation purposes. 

There are three child elements of the root <probe> element, all singletons.  First, there is an 
optional <comment> element which allows users to include any additional information concerning the 
contents of the file.  The next entry is the <algorithm> element, which describes the simulation algorithm 
used to propagate the probe down the beamline.  The architecture of XAL allows different simulation 
algorithms to be used with the same beam probe (not simultaneously).  The last entry is the <state> 

<?xml version = '1.0' encoding = 'UTF-8'?> 
<probe time="Feb 9, 2004 2:42:00 PM" type="gov.sns.xal.model.probe.EnvelopeProbe"> 
    <comment text="XAL model probe representing rms envelope state at HEBT entrance"/> 
    <algorithm type="EnvTrackerAdapt" ver="1"> 
        <tracker debug="false" update="1"/> 
        <adapt errortol="1.0E-5" initstep="0.031278684521382855"  
 maxstep="0.0" norm="0" order="2" slack="0.05" maxiter="50"/> 
    </algorithm> 
    <state id="" type="gov.sns.xal.model.probe.traj.EnvelopeProbeState"> 
        <location W="2500000.0" elem="" s="0.0"/> 
        <species Er="9.393014E8" q="-1."/> 
        <beam I="0.020" Q="4.96894E-11"/> 
        <envelope 
            alphaX="-1.962" betaX="0.183" emitX="2.73e-6" 
            alphaY="1.768" betaY="0.161" emitY="2.73e-6" 
            alphaZ="0.0196" betaZ="0.5844" emitZ="3.8638e-6"/> 
    </state> 
</probe> 
 

Excerpt 9: example envelope probe file 

Attribute Description 
type Java class type of probe object 
id Identifier string of probe object 
time Time stamp of probe file 

author Author of probe file 
Table 21: <probe> element attributes 
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element which describes the internal state variables of the beam probe.  Every beam probe maintains a set 
of state variables describing the aspect of the beam it represents, for example, the moments of the beam up 
to second order in the case of the RMS envelope probe.  The probe requires the initial value of these state 
variables to begin the simulation.  We cover each child element of <probe> below. 

5.2 File Comments: The <comment> Element 
We can annotate the probe file with additional user data using the <comment> element.  These 

comments will then also be available programmatically and at run time within the XAL environment.  As 
seen in Excerpt 9 the text of the comment is included as the value of the text attribute.  In that case the 
probe file is declared to be the initial state of an RMS envelope probe at the entrance to a HEBT section.  
There are two more supported attributes for a <comment> entry which are not shown in the excerpt, author 
and date.  The author attribute allows one to identify the author of the comment; the date attribute is a 
date stamp for the comment. 

5.3 Specifying the Simulation Algorithm: The <algorithm> Element 
Every beam probe needs an algorithm; this is an object which knows how to propagate the probe 

down the beamline.  Algorithm classes are built for specific probe classes, but probe classes are 
independent of algorithm classes.  Thus, it is possible for a single probe class to be associated with many 
different algorithm classes, but each algorithm understands only one probe.  (Currently, most probes have 
only one type of algorithm associated with them.)  The <algorithm> element specifies the algorithm class 
to be used with the probe instance, and any numerical parameters needed by the algorithm. 

The <algorithm> element has two attributes, type and ver.  The type attribute is required and 
specifies the algorithm class to use for the simulation.  Unfortunately, its value is not the actual Java class 
type of the algorithm object (most times it is so, however).  The value of this attribute is actually the Java 
string returned by the getType() method of the algorithm class.  (All algorithm classes are derived from 
the base class gov.sns.xal.model.alg.Tracker, so existence of this method is guaranteed.)  Typically, 
the string returned by this method is the class name of the algorithm without the package prefix.  For 
example, in Excerpt 9 the value of type is “EnvTrackerAdapt”; the Java class type of the algorithm is 
actually gov.sns.xal.model.alg.EnvTrackerAdapt.  Unfortunately, in the necessity of absolute certainty 
it is best to check the source code for this value.  The ver attribute is optional and contains a version stamp 
for the algorithm.  This attribute is available to maintain backward compatibility in case any major changes 
are made to existing algorithm classes.  

The <algorithm> element has at least one child element, <tracker>.  Other elements pertaining to 
the particular algorithm class will likely be present.  For example, the <algorithm> entry in Excerpt 9 
contains the child <adapt> which specifies numerical parameters for the adaptive space charge algorithm.  
We discuss the <tracker> element, then the <adapt> element of the RMS envelope probe since it is the 
most common additional element. 

5.3.1 The <tracker> Element 
In the parenthetical remark above we mentioned 

that all algorithm classes in XAL are derived from a 
common base class, gov.sns.xal.model.alg.Tracker.  
The <tracker> element specifies parameters of this base 
class and, thus, parameters common to all algorithm 
classes.  There are currently only two attributes of this 
element, debug and update, which are listed in Table 22.  
The debug attribute is a Boolean debugging flag.  When 
the value is set to “1” the algorithm object will send 
debugging information to the console.  Under normal 
operation this value should be set to “0” indicating that no 
debugging information is generated.  The update attribute 
is more complex, it specifies the manner in which the 
probe’s trajectory information is saved throughout the beamline.   

Attribute Description 

debug Debugging flag (“0” or “1”) 
update Trajectory updating scheme 

0 Never 
1 Always 
2 Element exit 
4 Element entrance 
6 Entrance and exit  

Table 22: <tracker> attributes 
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To be useful, the probe object must save its past states as it propagates down the beamline.  We 
call these past states of the probe the probe trajectory, and it is treated as a single object within the XAL 
framework.  There are several instances where the probe must compute many more states than is necessary 
to store.  For example, to maintain a given accuracy the probe may need to make many steps through a 
beamline element but only the probe states at the exit of each element are needed for a particular 
accelerator application.  Rather than saving all the intermediate states generated by the probe, which can 
lead to a significant waste of computer resources, we can specify what states we wish to keep after 
termination of the simulation.  This capability is accomplished using the update attribute of the <tracker> 
element.  Table 22 lists the supported trajectory update schemes of all the algorithm classes in XAL.  The 
value of the update attribute determines the amount of trajectory information (i.e., the number of probe 
states) stored in the trajectory object upon completion of the simulation. 

Referring to Table 22 we see that there are five possible values for the update attribute; all are 
integer indexes.  A value of “0” indicates that the algorithm should never update the trajectory object.  This 
value would be specified only if a custom probe algorithm was used, one that maintains its own update 
scheme, otherwise no simulation information would be generated.  A value of “1” requests that the 
algorithm store every state generated in the simulation.  This situation could potentially create an enormous 
trajectory object.  However, it may be of value, for example, when using the adaptive space charge 
algorithm for the RMS envelope probe.  There one may wish to determine where in the beamline the 
algorithm is spending the most computation effort and, thus, where the beam is experiencing large dynamic 
motion.  Setting the value of update to “2” causes the algorithm to save state information only at the exit of 
each beamline element.  This setting is probably the most common.  Setting the value of update to “4” 
causes the algorithm to save state information only at the entrance of each beamline element.  Since, in the 
context of most simulations, the exit of one beamline element is the entrance to the following, the only 
difference between value “2” and value “4” is that the trajectory generated by “4” will not contain the final 
state of the simulation (the initial states of the simulation is always saved in the trajectory).  Finally a value 
of “6” indicates that the probe state information is to be saved at both the entrance and the exit of each 
beamline element. 

5.3.2 The <adapt> Element 
The <adapt> element is valid only in the context of an RMS envelope probe when using the 

adaptive space charge algorithm.  Specifically, when the type attribute of the <probe> element is set to 
“gov.sns.xal.model.probe.EnvelopeProbe” and when the type attribute of the <algorithm> child 
element is set to “EnvTrackerAdapt”.  (In the case of the RMS envelope probe there exists other available 
algorithms.  The adaptive space charge algorithm is the most general, thus, the most practical and most 
widely used.)  Since the RMS envelope probe is widely used for simulation, we briefly cover the <adapt> 
element.  The attributes of this element are the fields of the “adaptivetracker” table in the model-
parameter table group covered in Subsection 4.2.3, less the name field.  Specifically then, these attributes 
are errortol, initstep, maxstep, slack, maxiter, norm, and order.  The values of these fields are the 
same as those listed in Subsection 4.2.3, consequently, the descriptions there apply. 

5.4 Specifying the Initial Probe State: The <state> Element 
Beam probe objects maintain their state using a separate probe state objects.  The <state> 

element describes a probe state at given instance, in the case of a probe file, at the initial position.  Probe 
states maintain all the information necessary to describe a beam probe’s internal condition at any point 
along the beamline.  Of course this information differs depending upon the type of probe being simulated; 
therefore, the structure of a <state> entry is not uniform.  However, all probe state objects are derived 
from a common base class gov.sns.xal.model.probe.traj.ProbeState.  Accordingly, there are common 
data to each probe state and, thus, common child elements of each <state> element.  We cover these 
common elements and the <envelope> element particular to the RMS envelope probe.  First we describe 
the attributes of the <state> element. 

There are two attributes of the <state> element, type and id.  The type attribute contains the Java 
class type of the probe state object.  We see in the case of Excerpt 9, this class is 
gov.sns.xal.model.probe.traj.EnvelopeProbeState, indicating the probe-state Java class for the RMS 
envelope probe (Java type gov.sns.xal.model.probe.EnvelopeProbe).  The id attribute is optional, it 
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provides an identifier for the initial probe state which may be accessed programmatically, or during run 
time.  In Excerpt 9 we see this value is left as null (i.e., id=””). 

5.4.1 Setting the Initial Energy, Time, and Position: The <location> Element 
Each <state> element contains a <location> child element.  The attributes of this element 

contain data in the base class gov.sns.xal.model.probe.traj.ProbeState common to all probe state 
objects.  There are four possible attributes here, W, s, t, and elem.  The W attribute is required; it contains the 
initial kinetic energy of the beam in electron-Volts.  The other three attributes are all optional, having 
default values if not specified.  The s attribute is the initial path length parameter.  Typically this value is 
zero, which is its default value.  There is no real significance to this value; it does not change the starting 
location of the simulation.  It just offers the user the capability of initiating the path length parameter to a 
nonzero value.  The t attribute is the initial time of the simulation.  Once again, the actual value is not 
significant as far as the simulation is concerned; it is simply an arbitrary starting time.  The default value 
for t is zero (i.e., t=”0.0”).  The last attribute, elem, does have an effect on the simulation.  The value of 
this attribute is the unique <node> identifier where the simulation is to begin, that is., the id attribute of the 
<node> element.  Setting the elem attribute to a valid node identifier causes the simulation to skip to that 
<node> within the sequence where it belongs.  The default value of elem is null (elem=””), in which case 
the simulation begins at the entrance of the <sequence> element where it is started. 

5.4.2 Specifying the Particle Charge and Mass: The <species> Element 
Also part of the base ProbeState is the charge and rest energy of the beam particle.  These values 

are specified using the <species> element.  There are two attributes of this element, q and Er.  The 
attribute q is the charge of the beam particle in units of the unit charge e ≈ 1.602×10−19.  The Er attribute is 
the rest energy of the beam particle in units of electron volts.  Since the rest energy Er of a particle is 
proportional to is mass m by a factor c2 (Er = mc2), this is equivalent to specifying that beam particle’s mass.  
For example, in the case of a proton, the rest energy would be specified by setting Er=”9.38e8”. 

5.4.3 Specifying the Beam Current and Bunch Charge: The <beam> Element 
For simulations that involve the notion of a beam, for example an RMS envelope simulation, the 

corresponding probe states are derived from a child class of ProbeState called 
gov.sns.xal.model.probe.traj.BeamState.  The later class adds parameters to the probe state which 
have context in these situations, namely the notions of beam current and bunch charge.  (For a counter 
example, consider the case of single-particle simulation where there is no “beam” per se.)  To represent 
these parameters the <beam> element is included under the <state> parent.  This element has two attributes 
I and Q, representing the beam current and bunch charge, respectiviely.  The value of the I attribute is in 
units of Amperes, whereas the Q attribute has units of Coulombs.  Recall that for bunched beams in an RF 
system with frequency f, these parameters are related by Eq. (10). 

5.4.4 Specifying the Initial RMS Beam Ellipse: The <envelope> Element 
In the special case of an RMS envelope simulation, the <envelope> element should be present as a 

child of the <state> element.  This situation is depicted in Excerpt 9.  The <envelope> element specifies 
the Courant-Snyder, or Twiss, parameters of the initial RMS beam ellipse.  The attributes of <envelope> 
are the α and β Courant-Snyder parameters, along with the RMS emittances for each phase plane of the 
beam.  Thus, to specify all these parameters we need a total of six attributes, three for each phase plane.  
Referring to Excerpt 9, we see that there are attributes alphaX, alphaY, and alphaZ which are the initial α 
parameters for the beam ellipses in the x, y, z planes respectively.  The values of these attributes are unit-
less.  The betaX, betaY, and betaZ attributes specify the initial Courant-Snyder β parameters for the x, y, z 
phase planes respectively.  The units there are in radians/meter.  Finally, the attributes emitX, emitY, and 
emitZ are the initial RMS emittances of the beam in the x, y, and z phase planes, respectively.  The units for 
all emittance parameters, including that of the longitudinal plane z, are radian-meters. 

6 Conclusion 
We have covered much of what is necessary to configure an XAL installation to a particular 

accelerator complex.  There are four primary XML files to be populated.  The main.xal file is the first 
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place XAL looks to configure itself.  This file contains the types and locations of all the remaining 
configuration files.  The most important, and typically the largest, is the optics file, tagged 
<optics_source> in main.xal.  It describes all the machine hardware in the beamline relevant to XAL 
operation.  The next file is the timing file, tagged <timing_source> in main.xal.  This file is typically a 
small file listing the channels of general timing signals within the accelerator complex.  XAL can be used 
without this file, although many of the existing applications that ship with XAL use these signals.  The last 
file is the model-parameters file.  This file is a special instance of the more general table-group mechanism 
used by XAL to import user data.  All such table groups are tagged with the <tablegroup_source> entry 
within the main.xal file.  We have discussed the general outline of a table group and how it is used to 
include data particular to an accelerator site, and how it may be accessed within XAL.  The model-
parameters table group must have the name attribute of its corresponding <tablegroup_source> entry set to 
“modelparams” for XAL to recognize it as such.  The model-parameters table group must be included in 
order to use the simulation capabilities of XAL, that is, to use the XAL online model. 

Since XAL is under continual development (and essentially a collaborative effort), this document 
is necessarily dated.  As the software system is improved and updated, there are bound to be changes in the 
specifics described here.  Fortunately, XAL is based upon a solid architectural foundation so that any 
fundamental changes in the XAL implementation will likely to be minimal.  Thus, although some details 
may be altered in the future, the basic structure described here is unlikely to incur any major changes.  It is 
also hoped that this will be a living document, one that will evolve as XAL does.  By keeping this 
document in the public domain, developers can record their improvements and additions so that these 
features are accessible to all. 
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Appendix A: Listing of xdxf.dtd 
 
<?xml version="1.0" encoding="US-ASCII" ?> 
 
 
<!-- EXTENDED DESCRIPTION EXCHANGE FORMAT (XDXF) 
  -       Document Type Definition 
  - 
  -  Version   : 1.2.0 
  -  Author    : Christopher K. Allen, Paul C. Chu 
  -  Modified  : June, 2002 
  - 
  --> 
 
 
<!-- ################################################################### --> 
<!-- XDXF Edit Context --> 
 
<!ELEMENT sources ( optics_source, optics_extra*, timing_source, tablegroup_source* ) > 
 
<!ELEMENT optics_source EMPTY > 
<!ATTLIST optics_source name NMTOKEN #REQUIRED > 
<!ATTLIST optics_source url NMTOKEN #REQUIRED > 
 
<!ELEMENT timing_source EMPTY > 
<!ATTLIST timing_source name NMTOKEN #REQUIRED > 
<!ATTLIST timing_source url NMTOKEN #REQUIRED > 
 
<!ELEMENT optics_extra EMPTY > 
<!ATTLIST optics_extra name NMTOKEN #REQUIRED > 
<!ATTLIST optics_extra url NMTOKEN #REQUIRED > 
 
<!ELEMENT tablegroup_source EMPTY > 
<!ATTLIST tablegroup_source name NMTOKEN #IMPLIED > 
<!ATTLIST tablegroup_source url NMTOKEN #IMPLIED > 
 
<!ELEMENT table ( schema, record+ ) > 
<!ATTLIST table name NMTOKEN #REQUIRED > 
<!ATTLIST table recordClass NMTOKEN #IMPLIED > 
 
<!ELEMENT schema ( attribute+ ) > 
 
<!ELEMENT tablegroup ( table+ ) > 
 
<!ELEMENT attribute EMPTY > 
<!ATTLIST attribute isPrimaryKey NMTOKEN #IMPLIED > 
<!ATTLIST attribute name NMTOKEN #REQUIRED > 
<!ATTLIST attribute type NMTOKEN #REQUIRED > 
 
<!ELEMENT record EMPTY > 
<!ATTLIST record alphaX NMTOKEN #IMPLIED > 
<!ATTLIST record alphaY NMTOKEN #IMPLIED > 
<!ATTLIST record alphaZ NMTOKEN #IMPLIED > 
<!ATTLIST record beamCharge NMTOKEN #IMPLIED > 
<!ATTLIST record beamCurrent NMTOKEN #IMPLIED > 
<!ATTLIST record betaX NMTOKEN #IMPLIED > 
<!ATTLIST record betaY NMTOKEN #IMPLIED > 
<!ATTLIST record betaZ NMTOKEN #IMPLIED > 
<!ATTLIST record eX NMTOKEN #IMPLIED > 
<!ATTLIST record eY NMTOKEN #IMPLIED > 
<!ATTLIST record eZ NMTOKEN #IMPLIED > 
<!ATTLIST record envelopeID NMTOKEN #IMPLIED > 
<!ATTLIST record particleCharge NMTOKEN #IMPLIED > 
<!ATTLIST record particleID NMTOKEN #IMPLIED > 
<!ATTLIST record particleKineticEnergy CDATA #IMPLIED > 
<!ATTLIST record particleRestEnergy CDATA #IMPLIED > 
<!ATTLIST record position NMTOKEN #IMPLIED > 
<!ATTLIST record x NMTOKEN #IMPLIED > 
<!ATTLIST record xp NMTOKEN #IMPLIED > 
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<!ATTLIST record y NMTOKEN #IMPLIED > 
<!ATTLIST record yp NMTOKEN #IMPLIED > 
<!ATTLIST record z NMTOKEN #IMPLIED > 
<!ATTLIST record zp NMTOKEN #IMPLIED > 
 
 
<!-- ################################################################### --> 
<!-- XDXF Attribute Library --> 
 
<!ELEMENT attributes ( align | magnet | rfgap )* > 
 
<!ELEMENT align EMPTY > 
<!ATTLIST align pitch NMTOKEN #IMPLIED > 
<!ATTLIST align roll NMTOKEN #IMPLIED > 
<!ATTLIST align x NMTOKEN #IMPLIED > 
<!ATTLIST align y NMTOKEN #IMPLIED > 
<!ATTLIST align yaw NMTOKEN #IMPLIED > 
<!ATTLIST align z NMTOKEN #IMPLIED > 
 
<!ELEMENT aperture EMPTY> 
<!ATTLIST aperture shape  CDATA   #IMPLIED > 
<!ATTLIST aperture x      NMTOKEN #IMPLIED > 
<!ATTLIST aperture y      NMTOKEN #IMPLIED > 
 
<!ELEMENT displacement EMPTY> 
<!ATTLIST displacement x     NMTOKEN #IMPLIED > 
<!ATTLIST displacement y     NMTOKEN #IMPLIED > 
<!ATTLIST displacement z     NMTOKEN #IMPLIED > 
 
<!ELEMENT magnet EMPTY > 
<!ATTLIST magnet dfltMagFld NMTOKEN #IMPLIED > 
<!ATTLIST magnet len NMTOKEN #REQUIRED > 
<!ATTLIST magnet polarity NMTOKEN #IMPLIED > 
 
<!ELEMENT rfgap EMPTY > 
<!ATTLIST rfgap TTF NMTOKEN #REQUIRED > 
<!ATTLIST rfgap ampFactor NMTOKEN #IMPLIED > 
<!ATTLIST rfgap amp NMTOKEN #IMPLIED > 
<!ATTLIST rfgap freq NMTOKEN #IMPLIED > 
<!ATTLIST rfgap length NMTOKEN #REQUIRED > 
<!ATTLIST rfgap phaseFactor NMTOKEN #IMPLIED > 
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<!ATTLIST channel signal NMTOKEN #REQUIRED > 
 
<!ELEMENT channelsuite ( channel* ) > 
<!ATTLIST channelsuite name NMTOKEN #IMPLIED > 
 
 
<!-- ################################################################### --> 
<!-- Timing Signals --> 
 
<!ELEMENT timing ( channelsuite ) > 
 
 
<!-- ################################################################### --> 
<!-- XDXF Data Structure --> 
 
<!ELEMENT xdxf ( sequence+ ) > 
<!ATTLIST xdxf date CDATA #REQUIRED > 
<!ATTLIST xdxf system NMTOKEN #REQUIRED > 
<!ATTLIST xdxf ver NMTOKEN #REQUIRED > 
 
<!ELEMENT comment (#PCDATA)> 
<!ATTLIST comment author CDATA  #IMPLIED > 
<!ATTLIST comment date CDATA  #IMPLIED > 
 
<!ELEMENT sequence ( channelsuite | node+ | sequence )* > 
<!ATTLIST sequence id NMTOKEN #REQUIRED > 
<!ATTLIST sequence len NMTOKEN #IMPLIED > 
<!ATTLIST sequence pos NMTOKEN #IMPLIED > 
<!ATTLIST sequence type NMTOKEN #IMPLIED > 
 
<!ELEMENT node ( attributes, channelsuite? ) > 
<!ATTLIST node id ID #REQUIRED > 
<!ATTLIST node len NMTOKEN #IMPLIED > 
<!ATTLIST node pos NMTOKEN #REQUIRED > 
<!ATTLIST node type ( BCM | Bnch | BPM | DCH | DCV | QH | QV | PMQH | PMQV | RG | WS ) 
#REQUIRED > 
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Appendix B: XAL Channel Handles 
Although the situation may be somewhat volatile, we list the channel handles for many of the 

hardware object in the smf package.  Note that the safest procedure for determining these values is to 
consult the source code.  However, it is also worthwhile to consolidate the channel handle values in order 
to facilitate the XAL configuration process and provide a central documentation of such. 

Class Class Field Channel 
Handle 

Description 

Electromagnet 

VDipoleCorr 

HDipoleCorr 

Bend 

Quadrupole 

TrimmedQuadrupole 

Sextupole 

FIELD_RB_HANDLE fieldRB Field strength readback 

RfCavity 

CCL 

DTLTank 

ReBuncher 

SCLCavity 

CAV_AMP_SET_HANDLE 

CAV_PHASE_SET_HANDLE 

CAV_AMP_AVG_HANDLE 

CAV_PHASE_AVG_HANDLE 

DELTA_TRF_START_HANDLE 

DELTA_TRF_END_HANDLE 

T_DELAY_HANDLE 

cavAmpSet 

cavPhaseSet 

cavAmpAvg 

cavPhaseAvg 

deltaTRFStart 

deltaTRFEnd 

tDelay 

Set cav. amplitude channel 

Set cav. phase channel 

Cav. amplitude readback 

Cav. phase readback 

Delta T RF start 

Delta T RF end 

Time delay 

Vacuum 

CvgGauge 

IonGauge 

PRESS_HANDLE P Pressure readback (torr) 

BLM 

NeutronDetector 

LOSS_AVG_HANDLE 

T_AVG_LEN_HANDLE 

lossAvg 

tAvgLen 

Averaged current loss 

Averaged beam length 

BPM X_AVG_HANDLE 

Y_AVG_HANDLE 

AMP_AVG_HANDLE 

PHASE_AVG_HANDLE 

X_TBT_HANDLE 

Y_TBT_HANDLE 

AMP_TBT_HANDLE 

PHASE_TBT_HANDLE 

T_AVG_LEN_HANDLE 

xAvg 

yAvg 

amplitudeAvg” 

phaseAvg 

xTBT 

yTBT 

ampTBT 

phaseTBT 

tAvgLen 

Averaged hor. position 

Averaged vert. position 

Ave’ed current amplitude 

Averaged phase position 

Turn-by-turn hor. position 

Turn-by-turn vert. position 

Turn-by-turn amplitude 

Turn-by-turn phase pos. 

Turn-by-turn ave’ed length 

RingBPM STAGE1_LEN_HANDLE 

STAGE1_GAIN_HANDLE 

STAGE1_METHOD_HANDLE 

STAGE2_LEN_HANDLE 

STAGE2_GAIN_HANDLE 

STAGE2_METHOD_HANDLE 

Stage1Len 

Stage1Gain 

Stage1Method 

Stage2Len 

Stage2Gain 

Stage2Metod 

Stage 1 length 

Stage 1 gain (4 settings) 

Stage 1 mode (base, or 402.5) 

Stage 2 length 

Stage 2 gain (4 settings) 

Stage 2 mode (base, or 402.5) 
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STAGE3_LEN_HANDLE 

STAGE3_GAIN_HANDLE 

STAGE3_METHOD_HANDLE 

STAGE4_LEN_HANDLE 

STAGE4_GAIN_HANDLE 

STAGE4_METHOD_HANDLE 

Stage3Len 

Stage3Gain 

Stage3Method 

Stage4Len 

Stage4Gain 

Stage4Method 

Stage 3 length 

Stage 3 gain (4 settings) 

Stage 3 mode (base, or 402.5) 

Stage 4 length 

Stage 4 gain (4 settings) 

Stage 4 mode (base, or 402.5) 

CurrentMonitor Q_INTEGRAL_HANDLE 

T_AVG_LEN_HANDLE 

I_TBT_HANDLE 

T_DELAY_HANDLE 

I_AVG_HANDLE 

I_MAX_HANDLE 

Particles 

DisplayLength 

currentTBT 

tDelay 

currentAvg 

currentMax 

Macro-pulse  charge 

Averaged pulse length 

Turn-by-turn current 

Time delay 

Average beam current 

Maximum beam current 

ProfileMonitor POS_HANDLE 

RT_GRAPH_HANDLE 

ABORT_SCAN_HANDLE 

BEGIN_SCAN_HANDLE 

CHANGE_PARAMS_HANDLE 

ACCEPT_PARAMS_HANDLE 

STAT_ARRAD_HANDLE 

VDATA_ARRAD_HANDLE 

DDATA_ARRAD_HANDLE 

HDATA_ARRAD_HANDLE 

POS_ARRAD_HANDLE 

STEPS_HANDLE 

STEP1_POS_HANDLE 

POS_SPACING_HANDLE 

NO_MEAS_HANDLE 

SCAN_LEN_HANDLE 

BIAS_HANDLE 

V_AREA_F_HANDLE 

V_AMP_F_HANDLE 

V_MEAN_F_HANDLE 

V_SIGMA_F_HANDLE 

V_OFFST_F_HANDLE 

V_SLOPE_F_HANDLE 

V_AREA_M_HANDLE 

V_AMP_M_HANDLE 

V_MEAN_M_HANDLE 

V_SIGMA_M_HANDLE 

V_OFFST_M_HANDLE 

Position 

RTGraph 

abortScan 

beginScan 

ChangeParams 

AcceptParams 

statusArray 

vDataArray 

dDataArray 

hDataArray 

positionArray 

nSteps 

Step1Pos 

PosSpacing 

NoMeas 

scanLength 

Bias 

vAreaF 

vAmpF 

vMeanF 

vSigmaF 

vOffstF 

vSlopeF 

vAreaM 

vAmpM 

vMeanM 

vSigmaM 

vOffstM 

Real-time position of wire 

??? 

Stop wire scan 

Begin wire scan 

??? 

??? 

Wire scanner status array ? 

Vertical data array? 

Diagonal data array? 

Horizontal data array? 

Wire positions array? 

Number of scanner steps 

Set  start position of wire (mm) 

Distance between steps? 

No. of pulses for each wire pos. 

Length of scan (mm) 

Wire bias voltage (Volts) 

Vertical area fit? 

Vertical amplitude fit? 

Vertical mean fit? 

Vertical sigma fit? 

Vertical offset fit? 

Vertical slope fit? 

Vertical area RMS 

Vertical amplitude RMS 

Vertical mean RMS 

Vertical sigma RMS 

Vertical offset RMS 
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V_SLOPE_M_HANDLE 

D_AREA_F_HANDLE 

D_AMP_F_HANDLE 

D_MEAN_F_HANDLE 

D_SIGMA_F_HANDLE 

D_OFFST_F_HANDLE 

D_SLOPE_F_HANDLE 

D_AREA_M_HANDLE 

D_AMP_M_HANDLE 

D_MEAN_M_HANDLE 

D_SIGMA_M_HANDLE 

D_OFFST_M_HANDLE 

D_SLOPE_M_HANDLE 

H_AREA_F_HANDLE 

H_AMP_F_HANDLE 

H_MEAN_F_HANDLE 

H_SIGMA_F_HANDLE 

H_OFFST_F_HANDLE 

H_SLOPE_F_HANDLE 

H_AREA_M_HANDLE 

H_AMP_M_HANDLE 

H_MEAN_M_HANDLE 

H_SIGMA_M_HANDLE 

H_OFFST_M_HANDLE 

H_SLOPE_M_HANDLE 

V_FIT_HANDLE 

D_FIT_HANDLE 

H_FIT_HANDLE 

V_POS_HANDLE 

D_POS_HANDLE 

H_POS_HANDLE 

V_RAW_HANDLE 

D_RAW_HANDLE 

H_RAW_HANDLE 

V_REAL_DATA_HANDLE 

D_REAL_DATA_HANDLE 

H_REAL_DATA_HANDLE 

vSlopeM 

dAreaF 

dAmpF 

dMeanF 

dSigmaF 

dOffstF 

dSlopeF 

dAreaM 

dAmpM 

dMeanM 

dSigmaM 

dOffstM 

dSlopeM 

hAreaF 

hAmpF 

hMeanF 

hSigmaF 

hOffstF 

hSlopeF 

hAreaM 

hAmpM 

hMeanM 

hSigmaM 

hOffstM 

hSlopeM 

vFit 

dFit 

hFit 

vPos 

dPos 

hPos 

vRaw 

dRaw 

vRaw 

vRealData 

dRealData 

hRealData 

Vertical slope RMS 

Diagonal  area fit? 

Diagonal  amplitude fit? 

Diagonal  mean fit? 

Diagonal  sigma fit? 

Diagonal  offset fit? 

Diagonal  slope fit? 

Diagonal  area RMS 

Diagonal  amplitude RMS 

Diagonal  mean RMS 

Diagonal  sigma RMS 

Diagonal  offset RMS 

Diagonal  slope RMS 

Horizontal area fit? 

Horizontal amplitude fit? 

Horizontal mean fit? 

Horizontal sigma fit? 

Horizontal offset fit? 

Horizontal slope fit? 

Horizontal area RMS 

Horizontal amplitude RMS 

Horizontal mean RMS 

Horizontal sigma RMS 

Horizontal offset RMS 

Horizontal slope RMS 

Vertical fit array 

Diagonal fit array 

Horizontal fit array 

Vertical positions array (mm) 

Diagonal positions array (mm) 

Horizontal pos.’s array (mm) 

Raw vert. intensity array (AU) 

Raw diag. intensity array (AU) 

Raw vert. intensity array (AU) 

Vertical real data stream 

Diagonal real data stream 

Horizontal real data stream 

MagnetPowerSupply CYCLE_STATE_HANDLE 

CURRENT_SET_HANDLE 

CURRENT_RB_HANDLE 

cycleState 

I_Set 

I 

Invalid 0, cycling 1, valid 2 

Set power supply current 

PS current readback 
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MainMagnetSupply CYCLE_ENABLE_HANDLE 

FIELD_SET_HANDLE 

FIELD_RB_HANDLE 

FIELD_BOOK_HANDLE 

cycleEnable 

fieldSet 

psFieldRB 

B_Book 

Flag: cycle mag.. when set  

Set mag. field strength 

Field strength readback 

MPS field setpoint 

MagnetTrimSupply FIELD_SET_HANDLE 

FIELD_RB_HANDLE 

TRIM_CURRENT_SET_HANDLE 

TRIM_CURRENT_RB_HANDLE 

trimSet 

trimRB 

trimI_Set 

trimI 

Set mag. field strength 

Field strength readback 

Set trim PS current 

Trim PS current readback 

Table 23: XAL channel handle listing 
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Appendix C: Listing of tablegroup.dtd 
<?xml version="1.0" encoding="US-ASCII" ?> 
 
 
<!-- TABLE GROUP DOCUMENT TYPE DEFINITION 
  - 
  -  Version   : 1.0.0 
  -  Author    : Christopher K. Allen 
  -  Modified  : May, 2006 
  - 
  --> 
 
 
<!-- ################################################################### --> 
<!-- TABLEGROUP DEFINITION --> 
 
    <!ELEMENT tablegroup (table*) > 
    <!ATTLIST tablegroup name NMTOKEN #REQUIRED> 
  
    <!ELEMENT table (schema, record*) > 
 <!ATTLIST table name NMTOKEN #REQUIRED > 
 <!ATTLIST table recordClass CDATA #IMPLIED > 
  
 <!ELEMENT schema (attribute*) > 
  
 <!ELEMENT attribute EMPTY > 
 <!ATTLIST attribute isPrimaryKey (true|false) #IMPLIED> 
 <!ATTLIST attribute name NMTOKEN #REQUIRED > 
 <!ATTLIST attribute type CDATA #REQUIRED > 
 <!ATTLIST attribute defaultValue CDATA #IMPLIED> 
  
 <!ELEMENT record EMPTY > 
 <!ATTLIST record name NMTOKEN #REQUIRED > 
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Appendix D: Example Modeling Parameters Table Group 
<?xml version = '1.0' encoding = 'UTF-8'?> 
<!DOCTYPE modelparams SYSTEM "tablegroup.dtd"> 
<tablegroup> 
    <table name="species"> 
        <schema> 
            <attribute isPrimaryKey="true" name="name" type="java.lang.String"/> 
            <attribute isPrimaryKey="false" name="mass" type="java.lang.Double"/> 
            <attribute isPrimaryKey="false" name="charge" type="java.lang.Double"/> 
        </schema> 
        <record name="HMINUS" mass="9.393014E8" charge="-1"/> 
        <record name="PROTON" mass="9.382720E8" charge="1"/> 
    </table> 
  
    <table name="beam"> 
        <schema> 
            <attribute isPrimaryKey="true" name="name" type="java.lang.String"/> 
            <attribute isPrimaryKey="false" name="I" type="java.lang.Double"/> 
            <attribute isPrimaryKey="false" name="Q" type="java.lang.Double"/> 
        </schema> 
        <record name="default" I="0.020" Q="4.96894E-11"/> 
    </table> 
 
    <table name="adaptivetracker"> 
        <schema> 
            <attribute isPrimaryKey="true" name="name" type="java.lang.String"/> 
            <attribute isPrimaryKey="false" name="errortol" type="java.lang.Double" defaultValue="1.0E-3"/> 
            <attribute isPrimaryKey="false" name="initstep" type="java.lang.Double" defaultValue="0.01"/> 
            <attribute isPrimaryKey="false" name="maxstep" type="java.lang.Double" defaultValue="0.0"/> 
            <attribute isPrimaryKey="false" name="norm" type="java.lang.Integer" defaultValue="0"/> 
            <attribute isPrimaryKey="false" name="order" type="java.lang.Integer" defaultValue="2"/> 
            <attribute isPrimaryKey="false" name="slack" type="java.lang.Double" defaultValue="0.05"/> 
            <attribute isPrimaryKey="false" name="maxiter" type="java.lang.Integer" defaultValue="100"/> 
       </schema> 
       <record name="default"/> 
       <record name="MEBT"/>   
       <record name="DTL1"/>   
       <record name="DTL2"/>   
       <record name="DTL3"/>   
       <record name="DTL4"/>   
       <record name="DTL5"/>   
       <record name="DTL6"/>   
       <record name="CCL1"/>   
       <record name="CCL2"/>   
       <record name="CCL3"/>   
       <record name="CCL4"/>   
       <record name="SCLMed"/>   
       <record name="SCLHigh"/> 
       <record name="HEBT1" initstep="0.1" maxiter="100"/> 
       <record name="IDmp-"/> 
       <record name="RTBT1"/> 
        <record name="Ring1"/> 
    </table> 
  
    <table name="twiss"> 
        <schema> 
            <attribute isPrimaryKey="true" name="name" type="java.lang.String"/> 
            <attribute isPrimaryKey="true" name="coordinate" type="java.lang.String"/> 
            <attribute isPrimaryKey="false" name="alpha" type="java.lang.Double"/> 
            <attribute isPrimaryKey="false" name="beta" type="java.lang.Double"/> 
            <attribute isPrimaryKey="false" name="emittance" type="java.lang.Double"/> 
        </schema> 
        <record name="MEBT" coordinate="x" alpha="-1.620000" beta=" 0.155000" emittance="+3.02000e-006"/> 
        <record name="MEBT" coordinate="y" alpha=" 3.230000" beta=" 0.381000" emittance="+3.46000e-006"/> 
        <record name="MEBT" coordinate="z" alpha=" 0.019600" beta=" 0.584400" emittance="+3.86380e-006"/> 
        <record name="DTL1" coordinate="x" alpha="-0.374691" beta=" 0.586174" emittance="+3.01915e-006"/> 
        <record name="DTL1" coordinate="y" alpha="-0.231111" beta=" 0.137198" emittance="+3.45946e-006"/> 
        <record name="DTL1" coordinate="z" alpha=" 0.299183" beta=" 0.471763" emittance="+3.86355e-006"/> 
        <record name="DTL2" coordinate="x" alpha=" 2.701320" beta=" 0.700338" emittance="+1.73777e-006"/> 
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        <record name="DTL2" coordinate="y" alpha="-2.603076" beta=" 0.794770" emittance="+1.99123e-006"/> 
        <record name="DTL2" coordinate="z" alpha="-0.397774" beta=" 0.403277" emittance="+2.20041e-006"/> 
        <record name="DTL3" coordinate="x" alpha=" 1.297644" beta=" 0.549192" emittance="+9.92285e-007"/> 
        <record name="DTL3" coordinate="y" alpha="-3.214553" beta=" 1.824498" emittance="+1.13702e-006"/> 
        <record name="DTL3" coordinate="z" alpha=" 0.196423" beta=" 1.817600" emittance="+1.21681e-006"/> 
        <record name="DTL4" coordinate="x" alpha=" 2.014815" beta=" 1.248958" emittance="+7.49028e-007"/> 
        <record name="DTL4" coordinate="y" alpha="-2.002180" beta=" 1.295824" emittance="+8.58283e-007"/> 
        <record name="DTL4" coordinate="z" alpha="-0.383242" beta=" 1.495460" emittance="+8.87229e-007"/> 
        <record name="DTL5" coordinate="x" alpha="-0.080589" beta=" 2.648011" emittance="+6.25412e-007"/> 
        <record name="DTL5" coordinate="y" alpha="-0.165355" beta=" 0.735660" emittance="+7.16623e-007"/> 
        <record name="DTL5" coordinate="z" alpha="-0.565187" beta=" 2.410661" emittance="+7.16145e-007"/> 
        <record name="DTL6" coordinate="x" alpha=" 2.126661" beta=" 1.792066" emittance="+5.49904e-007"/> 
        <record name="DTL6" coordinate="y" alpha="-1.977689" beta=" 1.719692" emittance="+6.30142e-007"/> 
        <record name="DTL6" coordinate="z" alpha="-0.068538" beta=" 2.218784" emittance="+6.10027e-007"/> 
        <record name="CCL1" coordinate="x" alpha="-3.279096" beta=" 3.879661" emittance="+5.00893e-007"/> 
        <record name="CCL1" coordinate="y" alpha=" 0.810056" beta=" 0.766892" emittance="+5.73962e-007"/> 
        <record name="CCL1" coordinate="z" alpha=" 0.653812" beta=" 3.145347" emittance="+5.40359e-007"/> 
        <record name="CCL2" coordinate="x" alpha=" 2.473646" beta=" 3.594577" emittance="+4.48495e-007"/> 
        <record name="CCL2" coordinate="y" alpha="-0.946671" beta=" 1.394213" emittance="+5.13934e-007"/> 
        <record name="CCL2" coordinate="z" alpha="-0.773927" beta=" 4.520875" emittance="+4.65244e-007"/> 
        <record name="CCL3" coordinate="x" alpha=" 2.283667" beta=" 4.582043" emittance="+4.02964e-007"/> 
        <record name="CCL3" coordinate="y" alpha="-1.293711" beta=" 2.236370" emittance="+4.61762e-007"/> 
        <record name="CCL3" coordinate="z" alpha=" 0.538514" beta=" 3.153244" emittance="+3.99505e-007"/> 
        <record name="CCL4" coordinate="x" alpha=" 2.787507" beta=" 7.072388" emittance="+3.65633e-007"/> 
        <record name="CCL4" coordinate="y" alpha="-1.313166" beta=" 3.617282" emittance="+4.18994e-007"/> 
        <record name="CCL4" coordinate="z" alpha="-0.634955" beta=" 4.202553" emittance="+3.45471e-007"/> 
        <record name="SCLMed" coordinate="x" alpha="-1.573126" beta=" 8.131378" emittance="+3.34159e-007"/> 
        <record name="SCLMed" coordinate="y" alpha=" 0.684698" beta=" 8.634511" emittance="+3.82927e-007"/> 
        <record name="SCLMed" coordinate="z" alpha=" 0.213766" beta=" 6.071008" emittance="+2.99985e-007"/> 
        <record name="SCLHigh" coordinate="x" alpha=" 0.379621" beta=" 4.666692" emittance="+2.19297e-007"/> 
        <record name="SCLHigh" coordinate="y" alpha=" 2.364523" beta="13.876136" emittance="+2.51303e-007"/> 
        <record name="SCLHigh" coordinate="z" alpha="-1.622597" beta=" 9.553335" emittance="+1.40606e-007"/> 
        <record name="HEBT1" coordinate="x" alpha=" 1.014436" beta=" 3.569722" emittance="+1.21644e-007"/> 
        <record name="HEBT1" coordinate="y" alpha="-1.748688" beta=" 9.444302" emittance="+1.39475e-007"/> 
        <record name="HEBT1" coordinate="z" alpha="-103.218446" beta="7096.290320" emittance="+3.67111e-008"/> 
        <record name="HEBT2" coordinate="x" alpha="-0.641247" beta=" 4.717389" emittance="+1.21644e-007"/> 
        <record name="HEBT2" coordinate="y" alpha=" 1.777757" beta="19.469339" emittance="+1.39475e-007"/> 
        <record name="HEBT2" coordinate="z" alpha="-170.8246" beta="18586.384" emittance="+3.67111e-008"/> 
        <record name="IDmp-" coordinate="x" alpha=" 0.073049" beta="12.568964" emittance="+1.21644e-007"/> 
        <record name="IDmp-" coordinate="y" alpha="-0.271860" beta="11.454688" emittance="+1.39475e-007"/> 
        <record name="IDmp-" coordinate="z" alpha="-314.2278" beta="58746.924" emittance="+3.67111e-008"/> 
        <record name="IDmp+" coordinate="x" alpha="-0.057543" beta="12.588942" emittance="+1.21644e-007"/> 
        <record name="IDmp+" coordinate="y" alpha="-0.560435" beta="13.467029" emittance="+1.39475e-007"/> 
        <record name="IDmp+" coordinate="z" alpha="-316.8352" beta="59691.567" emittance="+3.67111e-008"/> 
        <record name="RTBT1" coordinate="x" alpha="-1.3168" beta="5.8471" emittance="1.60e-4"/> 
        <record name="RTBT1" coordinate="y" alpha=" 0.6831" beta="9.2607" emittance="1.60e-4"/> 
        <record name="RTBT1" coordinate="z" alpha="-0.0036" beta="9589.2334" emittance="11.4e-3"/> 
        <record name="Ring1" coordinate="x" alpha="0.05" beta="11.8" emittance="1.50e-7"/> 
        <record name="Ring1" coordinate="y" alpha=" 0.05" beta="13.4" emittance="1.50e-7"/> 
        <record name="Ring1" coordinate="z" alpha="1." beta="18586.384" emittance="+5.e-8"/> 
    </table> 
  
    <table name="location"> 
        <schema> 
            <attribute isPrimaryKey="true" name="name" type="java.lang.String"/> 
            <attribute isPrimaryKey="false" name="species" type="java.lang.String"/> 
            <attribute isPrimaryKey="false" name="W" type="java.lang.Double"/> 
            <attribute isPrimaryKey="false" name="elem" type="java.lang.String" defaultValue=""/> 
            <attribute isPrimaryKey="false" name="s" type="java.lang.Double" defaultValue="0"/> 
            <attribute isPrimaryKey="false" name="t" type="java.lang.Double" defaultValue="0"/> 
        </schema> 
        <record name="MEBT" species="HMINUS" W="2.5E6"/> 
        <record name="DTL1" species="HMINUS" W="2.5E6"/> 
        <record name="DTL2" species="HMINUS" W="7.525E6"/> 
        <record name="DTL3" species="HMINUS" W="2.2885E7"/> 
        <record name="DTL4" species="HMINUS" W="3.9765E7"/> 
        <record name="DTL5" species="HMINUS" W="5.6536E7"/> 
        <record name="DTL6" species="HMINUS" W="7.2521E7"/> 
        <record name="CCL1" species="HMINUS" W="86.828E6"/> 
        <record name="CCL2" species="HMINUS" W="107.161E6"/> 
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        <record name="CCL3" species="HMINUS" W="131.142E6"/> 
        <record name="CCL4" species="HMINUS" W="157.214E6"/> 
        <record name="SCLMed" species="HMINUS" W="185.6266E6"/> 
        <record name="SCLHigh" species="HMINUS" W="391.4331E6"/> 
        <record name="HEBT1" species="HMINUS" W="1001.122E6"/> 
        <record name="HEBT2" species="HMINUS" W="1001.122E6"/> 
        <record name="IDmp-" species="HMINUS" W="1001.122E6"/> 
        <record name="Ring1" species="PROTON" W="1000.025E6"/>         
        <record name="Ring2" species="PROTON" W="1000.025E6"/>         
        <record name="Ring3" species="PROTON" W="1000.025E6"/>         
        <record name="Ring4" species="PROTON" W="1000.025E6"/>         
        <record name="Ring5" species="PROTON" W="1000.025E6"/>         
        <record name="IDmp+" species="PROTON" W="1000.025E6"/> 
        <record name="RTBT1" species="PROTON" W="1000.025E6"/> 
    </table> 
</tablegroup> 
 

 


