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Abstract 

In developing the control system for the Spallation 
Neutron Source (SNS) we have built an online particle-
beam simulator. It is an independent subsystem of the 
high-level applications programming framework called 
XAL.  The simulator architecture is based upon the 
Element-Algorithm-Probe design pattern where the same 
simulation engine can support various simulation 
strategies (e.g. single-particle and envelope simulations).  
Moreover, the system automatically synchronizes to the 
machine configuration and operating conditions; thus, no 
support for external off-line modeling is necessary.  As is 
XAL, the simulator is implemented in Java and stores 
persistent data (lattices, trajectories, etc.) in XML format.  

1 INTRODUCTION 
The Spallation Neutron Source (SNS) is using an 

application framework for high-level control application 
development called XAL [1].  XAL is a Java-based, 
device-oriented framework designed to expedite 
application development and decouple the developer from 
any low-level machine interaction.  Indeed, the underlying 
connection mechanism, EPICS in the case of SNS, is 
hidden from the developer.  The XAL framework also 
includes an online model for simulating various aspects of 
machine behavior; this modeling subsystem of XAL is the 
concern of this paper. 
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The design objective of the XAL online model is to 
provide a clean interface for high-level physics and 
control applications requiring a model reference.  This 
aim includes automatic configuration and synchronization 
to live hardware as well as presenting the same interface 
to differing simulation strategies (e.g., single-particle, 
multi-particle, envelope, response matrix, etc.).  It is also 
valuable to build a modeling system that is easily 
maintained and upgraded to support the varying 
requirements of commissioning and operating a particle 
accelerator.  We are able to achieve these various goals 
due to a novel approach in software architecture called the 
Element-Algorithm-Probe design pattern introduced by 
Malitsky and Talman[4].  This design strategy decouples 
the machine model from beam representation and 
dynamics calculations.  

The numerical simulation techniques and underlying 
physics have been outlined in a previous paper [2].  The 
techniques for envelope simulation are covered in detail 
by Allen and Pattengale [3].  Here we concentrate on the 

architecture and use of the online simulator.  We also 
present the results of validation and verification studies, 
which demonstrate that the simulator is, indeed, correctly 
modeling the accelerator system. 

2 SOFTWARE ARCHITECTURE 
The Element-Algorithm-Probe design pattern separates 

the machine representation from the beam representation 
and the dynamics calculations.  In accordance with this 
scheme, subsystems for representing the accelerator, the 
beam, and the beam dynamics are decomposed into 
separate software components that communicate through 
the well-defined software interfaces IElement, IProbe, 
and IAlgorithm, respectively.  In addition we have 
another subsystem for dynamically synchronizing the 
model parameters to live hardware configuration, design 
parameter values, and/or user-specified values. 

Figure 1: machine representation component 

2.1 Machine Representation 
A major effort in accelerator simulation is simply 

representing the machine.  By decoupling the machine 
representation from the machine’s action on the beam, the 
representation then can be used to support any number of 
simulation techniques.  Figure 1 is a UML structure 
diagram outlining the machine representation component 
of the simulator.  At the heart of this component is the 
IElement interface, which is exposed by any object 
representing a modeling element of the machine.  Note 
that we provide the (abstract) implementation class, 
Element, which provides a variety of common functions 
that modeling element must accommodate in support of 
the IElement interface.  Most objects representing 
beamline elements are derived from this convenience base 
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class.  In the figure we see derived classes must provide 
energy gains and transfer maps specific to the modeling 
element, done by implementing the abstract methods 
energyGain() and transferMap(). 

Shown in Figure 1 is the aggregation ElementSeq, 
which is an ordered sequence of IElement objects.  It, too, 
exposes the IElement interface, since it may be 
considered a composite modeling element.  The values 
obtained here, however, would be the aggregate results of 
all members in the sequence.  We also see that the 
Lattice object is just a specialized sequence.  Much of 
the Lattice class function is conceptual, however, it also 
provides access to the important mechanisms of probe 
propagation and online synchronization.  Through the 
method propagate() the Lattice object coordinates the 
operation of the machine representation, beam 
representation, and beam dynamics.  The online 
synchronization mechanism may be accessed via the 
method resync(). 

2.2 Beam Representation 
Figure 2 depicts the basic architecture of the beam 

representation component.  The interface to this 
component is called IProbe.  Note that the interface for 
the dynamics subsystem, IAlgorithm, is associated with 
IProbe.  Thus, each probe object, representing some 
aspect of a charged particle beam, also specifies its own 
dynamics.  There can be several types of dynamics 
calculations available for any particular probe (e.g., linear, 
third-order, etc.).  

In Figure 2 we see that the (abstract) class Probe is 
provided to assist in the implementation of particular 
probes.  It provides necessary bookkeeping as well as 
access to trajectory objects (not shown), which store 
probe histories along the lattice.  The maintenance of 
actual probe states is left to the particular probe 
implementation.  In the figure we see that the state of a 
ParticleProbe is the vector of particle phase space 
coordinates, the state of an EnvelopeProbe is the 
correlation matrix of moments up to second order, and the 
state of an EnsembleProbe is an ensemble object. 
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Figure 2: architecture of beam representation component 
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Figure 3: synchronization mechanism
.3 Machine Synchronization 
Synchronization with the operating hardware is 

ccomplished through a subsystem based on the (abstract) 
lass Synchronization.  It supports communication 
etween the XAL model system and arbitrary data 
ources, which otherwise have no awareness of one 
nother.  One data source in particular is the XAL 
tandard machine format (SMF) subsystem, which 
epresents the actual machine hardware. 

Shown in Figure 3, the synchronization mechanism is 
overned by a SynchronizationManager, which is 
omposed of many Synchronization objects.  Each 
odeling element, represented by the IElement interface, 
ay have, at most, one synchronization object associated 

o it.  (This condition is necessary because, for example, 
drifts” are not controllable devices of the accelerator.)  
lso indicated in the figure is that each type of modeling 

lement requires the implementation of a particular 
ynchronization subclass that understands the 
ommunication vernacular of the element. This 
olymorphism is not as difficult to support as one may 
uspect, since many elements are controllable through the 
ame interface (e.g., dipole correctors and quadrupole 
enses are both IElectromagnet’s).  We also subclass the 
ase class DataSource for each data source we support.  
nce implemented, any synchronization request is carried 
ut by invoking the abstract method resync() in the base 
lass.  Thus, to remain synchronized with the data source 
he SynchronizationManager invokes resync() on each 
ynchronization object whenever required. 

3 VERIFICATION AND VALIDATION 
In these contexts, code verification asks the question, 

Does the code compute what it is supposed to?”  whereas 
ode validation asks “does the code compute the 
nswer?”  We have verified that the online model against 
he simulation code Trace3D [5] for both the single-
article and envelope simulations.  Moreover, the 
nvelope simulation has been verified, to a certain extent, 
sing actual SNS commissioning data.  The response 
atrix calculation has been validated by hand but remains 

ntested in a working control application. 



where we see the simulation results for the SNS medium 
energy beam transport (MEBT) section.  The values for 
the Twiss parameter β(s) are shown in the figure.  In 
Figure 4b the simulation results are shown when XAL 
implements the more accurate numerical evaluation of 
RD.  Note that there is discrepancy here. 
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Figure 5: online model validation for SNS MEBT 

3.2 Validation 
In order to verify the predictions of the XAL online 

model, we compared the results of the rms envelope 
simulation against wire scanner data from the SNS 
accelerator.  Figure 5 shows data taken from six different 
beam locations along with the predictions of the XAL 
online model for the SNS MEBT and first drift tube linac 
SNS MEBT Simulation
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Figure 4: online model verification for SNS MEBT 
3.1 Verification 
Single particle simulation results for Trace3D and XAL 

are essentially identical.  For rms envelope simulations, 
comparison is more involved due to an anomaly of 
Trace3D.  For space charge dynamics one must evaluate 
the elliptic integral 
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The XAL online model evaluates this integral numerically 
according to an algorithm by Carlson, which is accurate to 
arbitrary precision [6]. Trace3D approximates the integral 
as 
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where ξ(s) is the “form factor” 
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Actual evaluation of ξ(s) is done through interpolation of 
a lookup table.  The above approximation is accurate only 
to first order, the accuracy decreasing with beam 
eccentricity. 

By employing the same approximation for RD as 
Trace3D, the XAL online model duplicates the 
predictions of Trace3D; this result is shown in Figure 4a 

(DTL).  Although not exact, the results are clearly 
correlated.  At the time of this writing it is suspected that 
the initial conditions of the beam into the MEBT section 
are not accurately characterized. 

4 STATUS AND SUMMARY 
The XAL online model currently supports single-

particle simulation, envelope simulation, and response-
matrix calculation.  Multi-particle simulation is still in 
development; the architecture is in place but the space-
charge calculation has not been implemented.  Also, XAL 
has no current capacity for modeling storage rings, 
although this should be a straightforward extension.  All 
the currently operational simulation capabilities have been 
verified and the envelope simulation has been validated 
against SNS commissioning data. 
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