
A NOVEL ONLINE SIMULATOR FOR APPLICATIONS REQUIRING A
MODEL REFERENCE*

C.K. Allen†, C.A. McChesney, LANL, Los Alamos, NM, 87545, USA

C.M. Chu, J. Galambos, W.-D. Klotz, T. Pelaia, A. Shislo, ORNL, Oak Ridge, TN, 37831

Abstract

In developing the control system for the Spallation
Neutron Source (SNS) we have built an online particle-
beam simulator. It is an independent subsystem of the
high-level applications programming framework called
XAL. The simulator architecture is based upon the
Element-Algorithm-Probe design pattern where the same
simulation engine can support various simulation
strategies (e.g. single-particle and envelope simulations).
Moreover, the system automatically synchronizes to the
machine configuration and operating conditions; thus, no
support for external off-line modeling is necessary. As is
XAL, the simulator is implemented in Java and stores
persistent data (lattices, trajectories, etc.) in XML format.

1 INTRODUCTION
The Spallation Neutron Source (SNS) is using an

application framework for high-level control application
development called XAL [1]. XAL is a Java-based,
device-oriented framework designed to expedite
application development and decouple the developer from
any low-level machine interaction. Indeed, the underlying
connection mechanism, EPICS in the case of SNS, is
hidden from the developer. The XAL framework also
includes an online model for simulating various aspects of
machine behavior; this modeling subsystem of XAL is the
concern of this paper.

*Work supported by the US Department of Energy under the auspices of SNS
†Corresponding author ckallen@lanl.gov

The design objective of the XAL online model is to
provide a clean interface for high-level physics and
control applications requiring a model reference. This
aim includes automatic configuration and synchronization
to live hardware as well as presenting the same interface
to differing simulation strategies (e.g., single-particle,
multi-particle, envelope, response matrix, etc.). It is also
valuable to build a modeling system that is easily
maintained and upgraded to support the varying
requirements of commissioning and operating a particle
accelerator. We are able to achieve these various goals
due to a novel approach in software architecture called the
Element-Algorithm-Probe design pattern introduced by
Malitsky and Talman[4]. This design strategy decouples
the machine model from beam representation and
dynamics calculations.

The numerical simulation techniques and underlying
physics have been outlined in a previous paper [2]. The
techniques for envelope simulation are covered in detail
by Allen and Pattengale [3]. Here we concentrate on the

architecture and use of the online simulator. We also
present the results of validation and verification studies,
which demonstrate that the simulator is, indeed, correctly
modeling the accelerator system.

2 SOFTWARE ARCHITECTURE
The Element-Algorithm-Probe design pattern separates

the machine representation from the beam representation
and the dynamics calculations. In accordance with this
scheme, subsystems for representing the accelerator, the
beam, and the beam dynamics are decomposed into
separate software components that communicate through
the well-defined software interfaces IElement, IProbe,
and IAlgorithm, respectively. In addition we have
another subsystem for dynamically synchronizing the
model parameters to live hardware configuration, design
parameter values, and/or user-specified values.

Figure 1: machine representation component

2.1 Machine Representation
A major effort in accelerator simulation is simply

representing the machine. By decoupling the machine
representation from the machine’s action on the beam, the
representation then can be used to support any number of
simulation techniques. Figure 1 is a UML structure
diagram outlining the machine representation component
of the simulator. At the heart of this component is the
IElement interface, which is exposed by any object
representing a modeling element of the machine. Note
that we provide the (abstract) implementation class,
Element, which provides a variety of common functions
that modeling element must accommodate in support of
the IElement interface. Most objects representing
beamline elements are derived from this convenience base

ataSource

«signal»
ewValue

«send»

entation class»
SourceType

class. In the figure we see derived classes must provide
energy gains and transfer maps specific to the modeling
element, done by implementing the abstract methods
energyGain() and transferMap().

Shown in Figure 1 is the aggregation ElementSeq,
which is an ordered sequence of IElement objects. It, too,
exposes the IElement interface, since it may be
considered a composite modeling element. The values
obtained here, however, would be the aggregate results of
all members in the sequence. We also see that the
Lattice object is just a specialized sequence. Much of
the Lattice class function is conceptual, however, it also
provides access to the important mechanisms of probe
propagation and online synchronization. Through the
method propagate() the Lattice object coordinates the
operation of the machine representation, beam
representation, and beam dynamics. The online
synchronization mechanism may be accessed via the
method resync().

2.2 Beam Representation
Figure 2 depicts the basic architecture of the beam

representation component. The interface to this
component is called IProbe. Note that the interface for
the dynamics subsystem, IAlgorithm, is associated with
IProbe. Thus, each probe object, representing some
aspect of a charged particle beam, also specifies its own
dynamics. There can be several types of dynamics
calculations available for any particular probe (e.g., linear,
third-order, etc.).

In Figure 2 we see that the (abstract) class Probe is
provided to assist in the implementation of particular
probes. It provides necessary bookkeeping as well as
access to trajectory objects (not shown), which store
probe histories along the lattice. The maintenance of
actual probe states is left to the particular probe
implementation. In the figure we see that the state of a
ParticleProbe is the vector of particle phase space
coordinates, the state of an EnvelopeProbe is the
correlation matrix of moments up to second order, and the
state of an EnsembleProbe is an ensemble object.

2

a
c
b
s
a
s
r

Figure 2: architecture of beam representation component

g
c
m
m
t
“
A
e
s
c
p
s
s
l
b
O
o
c
t
s

“
c
a
t
p
e
u
m
u

+resync()
+getModelingElement()

Synchronization

:D
IDataSource

«signal»-NewValue()

SynchronizationManager

1

-synchronizations*

«interface»
model::IElement

-sink

1..* 0..1

N

«interface»
IElementType

«implementation class»
SynchronizationType

«implem
Data

Figure 3: synchronization mechanism
.3 Machine Synchronization
Synchronization with the operating hardware is

ccomplished through a subsystem based on the (abstract)
lass Synchronization. It supports communication
etween the XAL model system and arbitrary data
ources, which otherwise have no awareness of one
nother. One data source in particular is the XAL
tandard machine format (SMF) subsystem, which
epresents the actual machine hardware.

Shown in Figure 3, the synchronization mechanism is
overned by a SynchronizationManager, which is
omposed of many Synchronization objects. Each
odeling element, represented by the IElement interface,
ay have, at most, one synchronization object associated

o it. (This condition is necessary because, for example,
drifts” are not controllable devices of the accelerator.)
lso indicated in the figure is that each type of modeling

lement requires the implementation of a particular
ynchronization subclass that understands the
ommunication vernacular of the element. This
olymorphism is not as difficult to support as one may
uspect, since many elements are controllable through the
ame interface (e.g., dipole correctors and quadrupole
enses are both IElectromagnet’s). We also subclass the
ase class DataSource for each data source we support.
nce implemented, any synchronization request is carried
ut by invoking the abstract method resync() in the base
lass. Thus, to remain synchronized with the data source
he SynchronizationManager invokes resync() on each
ynchronization object whenever required.

3 VERIFICATION AND VALIDATION
In these contexts, code verification asks the question,

Does the code compute what it is supposed to?” whereas
ode validation asks “does the code compute the
nswer?” We have verified that the online model against
he simulation code Trace3D [5] for both the single-
article and envelope simulations. Moreover, the
nvelope simulation has been verified, to a certain extent,
sing actual SNS commissioning data. The response
atrix calculation has been validated by hand but remains

ntested in a working control application.

where we see the simulation results for the SNS medium
energy beam transport (MEBT) section. The values for
the Twiss parameter β(s) are shown in the figure. In
Figure 4b the simulation results are shown when XAL
implements the more accurate numerical evaluation of
RD. Note that there is discrepancy here.

SNS MEBT and DTL1

-6
-4
-2
0
2
4
6

0 2 4 6 8 10

s (m)

rm
s

si
ze

 (m
m

)

XAL H
XAL V
Data H
Data V

Figure 5: online model validation for SNS MEBT

3.2 Validation
In order to verify the predictions of the XAL online

model, we compared the results of the rms envelope
simulation against wire scanner data from the SNS
accelerator. Figure 5 shows data taken from six different
beam locations along with the predictions of the XAL
online model for the SNS MEBT and first drift tube linac
SNS MEBT Simulation

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5 4

s (m)

H
or

iz
on

ta
l ⎠

(s
) (

m
/ra

d)

Trace3D
XAL

a) XAL using approximation of RD

SNS MEBT Simulation

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5 4

s (m)

H
or

iz
on

ta
l ⎯

(s
) (

m
/ra

d) Trace3D
XAL

b) XAL using numerical evaluation of RD

Figure 4: online model verification for SNS MEBT
3.1 Verification
Single particle simulation results for Trace3D and XAL

are essentially identical. For rms envelope simulations,
comparison is more involved due to an anomaly of
Trace3D. For space charge dynamics one must evaluate
the elliptic integral

∫ +++
≡

2/32/12/1)()()(2
3),,(

tztytx
dtzyxRD . (1)

The XAL online model evaluates this integral numerically
according to an algorithm by Carlson, which is accurate to
arbitrary precision [6]. Trace3D approximates the integral
as

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
≈

XY
Z

YXXZ
XYZRD ξ113),,(222 (2)

where ξ(s) is the “form factor”

()()
⎪
⎪

⎩

⎪
⎪

⎨

⎧

>
−

−

<
−

−

−
=

++
≡ −

−

∞

∫
.1

1

cosh1

,1
1

cos1

1
1

12
)(

2

1

2

1

20 2/32
s

s

ss

s
s

ss

sstt

dtssξ (3)

Actual evaluation of ξ(s) is done through interpolation of
a lookup table. The above approximation is accurate only
to first order, the accuracy decreasing with beam
eccentricity.

By employing the same approximation for RD as
Trace3D, the XAL online model duplicates the
predictions of Trace3D; this result is shown in Figure 4a

(DTL). Although not exact, the results are clearly
correlated. At the time of this writing it is suspected that
the initial conditions of the beam into the MEBT section
are not accurately characterized.

4 STATUS AND SUMMARY
The XAL online model currently supports single-

particle simulation, envelope simulation, and response-
matrix calculation. Multi-particle simulation is still in
development; the architecture is in place but the space-
charge calculation has not been implemented. Also, XAL
has no current capacity for modeling storage rings,
although this should be a straightforward extension. All
the currently operational simulation capabilities have been
verified and the envelope simulation has been validated
against SNS commissioning data.

5 REFERENCES
[1] J. Galambos et. al., “XAL Application Programming

Framework”, these proceedings.
[2] C.K. Allen, et. al., “A Modular Online Simulator for

Model Reference Control of Charged Particle
Beams”, PAC03, Portland, OR, May 2003.

[3] C.K. Allen and N.D. Pattengale, LA-UR-02-4979
http://lib-www.lanl.gov/cgi-in/getfile?00796950.pdf.

[4] N. Malitsky and R. Talman, “The Framework of the
Unified Accelerator Libraries”, ICAP 1998.

[5] K.R. Crandall and D.P. Rusthoi, “TRACE 3D
Documentation”, LANL Report LA-UR-97-886.

[6] B.C. Carlson, “Computing Elliptic Integrals by
Duplication”, Numer. Math., Vol. 33, 1-16 (1979).

	A NOVEL ONLINE SIMULATOR FOR APPLICATIONS REQUIRING A MODEL
	1 INTRODUCTION
	2 SOFTWARE ARCHITECTURE
	2.1 Machine Representation
	2.2 Beam Representation
	2.3 Machine Synchronization

	3 VERIFICATION AND VALIDATION
	3.1 Verification
	3.2 Validation

	4 STATUS AND SUMMARY
	5 REFERENCES

