
THAP060

SNS Application Programming Plan�

C.M. Chu, J. Galambos, J. Weiy , ORNL, Oak Ridge, TN, USA
C. Allen, P. McGehee, LANL, Los Alamos, NM, USA

N. Malitsky, BNL, Upton, NY, USA

Abstract

The plan for Spallation Neutron Source accelerator physics
application programs is presented. These high level appli-
cations involve processing and managing information from
the diagnostic instruments, the machine control system,
models and static databases and will be used to investigate
and control beam behavior. Primary components include
an SNS global database and Java-based XAL Application
Toolkit. A key element in the SNS application programs is
time synchronization of data used in these applications, due
to the short pulse (1 ms), pulsed (60 Hz) nature of the de-
vice. The data synchronization progress is also presented.

1 INTRODUCTION

The Spallation Neutron Source (SNS) is a high intensity
pulsed accelerator for neutron production. To commission
and run the SNS efficiently, we need high level physics ap-
plication software for modeling, integrated operation and
accelerator physics studies. In particular, we are construct-
ing an object oriented accelerator hierarchy programming
framework. We choose Java as the core programming lan-
guage because it provides object-oriented scope and ex-
isting interfaces to the controls software (e.g. Java Chan-
nel Access) and database information (JDBC, XML). The
SNS physics application software environment includes the
SNS global database, a Java-based software infrastructure
(XAL), and existing lattice tools such as Trace-3D and
MAD. The core part of this environment is the XAL infras-
tructure, which includes links to the SNS database, EPICS
Channel Access signals, shared extensible markup lan-
guage (XML) files among applications and external model-
ing tools, as well as built-in accelerator physics algorithms.
Data synchronization at the EPICS level for the SNS pulsed
nature is also in progress, and will be included in the XAL
infrastructure later.

2 SNS GLOBAL DATABASE

The SNS global database contains static information about
beam line devices (magnets, diagnostics, etc.), power sup-
plies, magnet measurement, global coordinates, as well as
other accelerator equipment. The table schemas, entities

�Work supported by DOE contract DE-AC05-00OR22725
y also at BNL

and relationships are described at [1] . The basic accel-
erator hierarchy is constructed from the database informa-
tion. For example information for constructing representa-
tive beamline sequences, their constituent lattice and diag-
nostic components, and the mapping of beamline compo-
nents to their respective EPICS Process Variables (PVs) all
comes from the global database.

Although it is possible to directly query the database
from the Java based XAL framework, instead we create
an intermediate XML file containing the accelerator hier-
archy. The structure of the XML files is based on the XAL
class view. The global database to local XML file transla-
tion is a stand-alone program outside the XAL, which ob-
viates the need for each XAL based applications to query
the database for initialization.

3 XAL INFRASTRUCTURE

The XAL infrastructure is a Java class structure providing a
programming interface with an accelerator hierarchy view.
XAL is a variant of UAL, 2.0[2], and detailed API informa-
tion for the XAL can be found on-line[3]. A schematic dia-
gram depicting the XAL infrastructure relationship to other
Accelerator components is shown in Fig. 2. The XAL pro-
vides application programs with connections to the static
data via XML files and the run-time data via Java Channel
Access.

The XAL class hierarchy is shown in Fig. 2. At the top
of the XAL class hierarchy is the SNS accelerator. The
accelerator is composed of different Accelerator sequences
(e.g. Medium Energy Beam Transport, Drift Tube Linac,
Ring, etc). The sequences are composed of nodes (e.g.
Qaudrupoles, BPMs, Correctors, etc.). There is a builtin
capability to include algorithms in XAL, but initially we
are using an external model (Trace-3D) for the linac ap-
plications. Regarding scripting possibilities, we are testing
the use of XAL class objects directly with Jython, without
need for any interface code.

3.1 EPICS Channel Access

All the run-time information for the applications will be ob-
tained through EPICS Channel Access. The XAL provides
the connectivity to the EPICS Channel Access via the ca
classes as shown in Fig. 2. Because the SNS is a pulsed
machine, for many applications the data correlation among



Figure 1: Application software infrastructure.

pulses is vital. The ca classes provide both synchronized
and non-synchronized methods for data taking. The data
synchronization will be described in detail in Sec 4.

3.2 Links to External Modeling Tools

Most of the existing accelerator modeling software pack-
ages are written in languages other than Java. To be able to
run these programs from Java-based XAL, first we need to
compile these programs as shared libraries; the XAL then
connects to the shared libraries via the Java Native Interface
(JNI). The file I/O is done through XML parsing provided
by the XAL, i.e. storing the calculated result in XML files,
thus the information is portable and share-able, and can be
also be accessed remotely. The JNI calls also require care-
fully arranging the running threads because normally pro-
grams tend to execute its own threads before starting the
non-Java threads.

4 DATA SYNCHRONIZATION

Data synchronization is an important feature for a pulsed
accelerator (1 msec beam pulses at 60 Hz). The SNS
Real Time Data Link will transmit a timestamp to all IOCs
across the accelerator at 60Hz, ensuring a good synchro-
nization of the time-stamps being applied to PVs. How-
ever, it may be difficult for high level applications to re-
liably gather sets of data from across the accelerator, all
from the same pulse. To facilitate this, a data-silo data time
correlator is being written. The data-silo method is shown
schematically in Fig. 3. The correlator reurns the most re-
cent set of time correlated sets of PV data for the requested
PV set.

The behavior of the DataSilo class is configurable by
three parameters: the maximum time to wait since start of
request, maximum width of the time bin, and the maxi-
mum number of channels allowed to be missing from the
synchronized data set. The correlator is implemented as
the C++ DataSilo class which allows the application’s pro-
grammer to:

� add and remove EPICS process variables from the
DataSilo set;

� dynamically define the maximum wait time, max-
imum bin number, and maximum missing bins al-
lowed;

� obtain the most recent synchronized set (no waiting);
wait up to the maximum wait seconds to obtain a syn-
chronized set (blocks)

� choose the earliest, latest, or mean time stamp from a
synchronized set.

5 CONCLUSION

The SNS global database is close to the end of design phase
and has been tested with SNS MEBT data. The XAL in-
frastructure is been constructed and tested with a modeling
tool, Trace-3D. The Channel Access part of the XAL will
be tested with faked IOC signals. Scripting tools such as
Matlab and Python will be used in the MEBT commission-
ing this coming spring.

6 ACKNOWLEDGMENTS

We would like to thank the SNS Controls, and Diagnos-
tics groups for kindly Providing EPICS, database and other
support.

7 REFERENCES

[1] http://ntser3.cad.ornl.gov/mis/EnterpriseModel/modell.htm.

[2] N.Malitsky, et al. “A Prototype of the UAL 2.0 Application
Toolkit”, THAP013, ICALEPCS 2001 Conference.

[3] http://sns.gov/APGroup/appProg/xalDoc/.



AcceleratorNode
AcceleratorNodeFactory

Accelerator

AcceleratorSeq

AcceleratorRoot

(implementation)
impl

BPM
Dipole
DipoleCorr
Quadrupole
RfCavity

SMF
(Standard Machine Format)

(channel access)
ca

BadChannelException
BpmSuite
Channel
ChannelException
ChannelSuite
ConnectionException
Signal
SignalSet
SynchronizedSet

AlignmentBucket
ApertureBucket
Attribute
AttributeBucket
AttributeBucketFactory
DisplaceBucket
MultipoleBucket
RfFieldBucket
RotationBucket
TwissBucket

(attributes)
attr

T3dBuilder
XdxfBucketHandler
XdxfBuilder
XdxfContentHandler
XdxfWriter

xdxf

GUI
(Graphical User Interface)

IElementIAlgorithm XalException IProbe

Figure 2: XAL infrastructure.

XXXXX

XXXXX
XXXXX

XXXXX

PV2 PV3 PV4PV1

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

IOC IOC BPM

Silo

Figure 3: Data-silo for data synchronization.


